- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Wiley Jeremy W. Lichstein; Hongcheng Zeng; John P. Caspersen; Mark C. Vanderwel; Mark C. Vanderwel; Georges Kunstler;doi: 10.1111/ele.12574
pmid: 26913575
AbstractEcologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental‐scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species‐independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age‐dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species‐dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).
Hyper Article en Lig... arrow_drop_down Ecology LettersArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Ecology LettersArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, France, ItalyPublisher:Wiley Funded by:UKRI | NI: MAST-NET: masting res..., UKRI | Adapting to the Challenge..., EC | ForestFutureUKRI| NI: MAST-NET: masting responses to climate change and impacts on ecosystems ,UKRI| Adapting to the Challenges of a Changing Environment (ACCE) ,EC| ForestFutureFoest, Jessie J.; Bogdziewicz, Michał; Pesendorfer, Mario B.; Ascoli, Davide; Cutini, Andrea; Nussbaumer, Anita; Verstraeten, Arne; Beudert, Burkhard; Chianucci, Francesco; Mezzavilla, Francesco; Gratzer, Georg; Kunstler, Georges; Meesenburg, Henning; Wagner, Markus; Mund, Martina; Cools, Nathalie; Vacek, Stanislav; Schmidt, Wolfgang; Vacek, Zdeněk; Hacket‐Pain, Andrew;AbstractClimate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest‐forming tree species often mast, i.e. reproduce through synchronised year‐to‐year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan‐European species. Here, we analysed 50 long‐term datasets of population‐level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site‐specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population‐level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.
Archivio Istituziona... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Finland, Germany, Finland, FrancePublisher:Wiley Funded by:EC | RESONATE, AKA | Potential of functional d...EC| RESONATE ,AKA| Potential of functional diversity for increasing the disturbance resiliency of forests and forest-based socio-ecological systems (FUNPOTENTIAL)Kulha, Niko; Honkaniemi, Juha; Barrere, Julien; Brandl, Susanne; Cordonnier, Thomas; Korhonen, Kari T.; Kunstler, Georges; Paul, Carola; Reineking, Björn; Peltoniemi, Mikko;Abstract Forest stand densities are increasing in the boreal and temperate biomes, suggesting that tree‐tree competition is intensifying. Anticipating the consequences of this intensified competition is difficult because competition‐induced mortality may depend not only on the occurrence of extreme climatic events such as drought, but also on stand composition, since tree species differ in their ability to compete and tolerate competition. A better understanding of the effects of stand composition and drought on competition‐induced mortality would help to anticipate future changes in forest ecosystems. We studied the tree‐level probability of competition‐induced mortality using National Forest Inventory data from three European countries (Finland, France and Germany), covering a latitudinal gradient from the Mediterranean to the Arctic. We investigated how (i) the proportion of conspecifics, (ii) the shade tolerance (ST) of the focal tree and its competitors and (iii) drought events modify the effect of competition on tree mortality. We used a generalized linear mixed model on a dataset of 461,109 trees representing 39 species on 48,088 individual plots. Competition, measured as the basal area of larger trees, was a stronger driver of background mortality (BM) than tree size and climate. A higher proportion of conspecifics increased the competition effect on mortality, showing that conspecific individuals had a higher competitive effect compared to heterospecific individuals. The competition effect on mortality also increased as a function of the ST of neighbouring trees, suggesting an increased shading effect. A higher ST of a focal tree decreased the competition effect on mortality. Drought anomalies increased the competition effect, resulting in a higher mortality probability for the most suppressed trees. Synthesis. Competition was the main driver of background mortality. Increasing stand density increased competition‐induced tree mortality in both monospecific and mixed stands, but to different extents depending on the proportion of conspecifics and tree species shade tolerance (ST). Drought periods increase mortality, especially among the most suppressed trees, suggesting an interaction between competitive status and drought. Incorporating more detailed information on stand composition and tree species ST into tree mortality models will improve our understanding of forest dynamics in a changing climate.
Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Wiley Funded by:AKA | Potential of functional d..., ANR | DECLIC, EC | RESONATEAKA| Potential of functional diversity for increasing the disturbance resiliency of forests and forest-based socio-ecological systems (FUNPOTENTIAL) ,ANR| DECLIC ,EC| RESONATEAuthors: Barrere, Julien; Reineking, Björn; Jaunatre, Maxime; Kunstler, Georges;Tree species composition is known to influence forest productivity, but its effect on forest resilience to disturbances such as storms remains largely unexplored. Furthermore, climate is likely to influence forest resilience directly but also to influence the effect of tree species composition on resilience. In Europe, storm-induced tree mortality is currently increasing across all climatic biomes. Understanding the drivers of forest resilience to storms and its consistency across climates appears to be crucial for predicting the consequences of climate change for European forests.In this study, we used a simulation approach with an integral projection model calibrated with National Forest Inventory (NFI) data at the European scale. We restricted our simulations to tree species assemblages observed in the NFI data, covering a species diversity gradient nested within a climate gradient. We quantified functional diversity and the mean position of each species assemblage at equilibrium on two functional axis: (i) conservative versus fast growing and (ii) low versus high recruitment. We disturbed each species assemblage from equilibrium using species-specific storm disturbance mortality probabilities and quantified the assemblages' resistance (inverse of immediate basal area loss), recovery (slope of post-disturbance increase in basal area) and resilience (inverse of the cumulative deviation of basal area from the undisturbed state).We found that on average, species-rich assemblages had higher recovery and resilience to storm disturbance, while functional diversity improved resistance and recovery. When analysing how this effect varied with climate, we found that diversity significantly increased resistance and resilience in the climatic margins only. Finally, we found that storm resilience was also driven by species mean position along both functional axes. In particular, the conservative-productive axis had an effect two to three times greater than diversity: forests dominated by conservative species were more resistant and resilient, but had lower recovery than species assemblages dominated by fast-growing species.Taken together, these results show that climate and tree species composition interact to control the ability of forests to resist and recover from a storm disturbance through both direct and indirect effects. As such, our findings should help to better anticipate climate change consequences for forest ecosystems. International audience
HAL Descartes arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL Descartes arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 Spain, France, Spain, GermanyPublisher:Wiley Heiland, Lukas; Kunstler, Georges; Ruiz-Benito, Paloma; Buras, Allan; Dahlgren, Jonas; Hülsmann, Lisa;handle: 10017/50741
Recent climate warming has fueled interest into climate‐driven range shifts of tree species. A common approach to detect range shifts is to compare the divergent occurrences between juvenile and adult trees along environmental gradients using static data. Divergent occurrences between life stages can, however, also be caused by ontogenetic effects. These include shifts of the viable environmental conditions throughout development (‘ontogenetic niche shift') as well as demographic dependencies that constrain the possible occurrence of subsequent life stages. Whether ontogenetic effects are an important driver of divergent occurrences between juvenile and adult trees along large‐scale climatic gradients is largely unknown. It is, however, critical in evaluating whether impacts of environmental change can be inferred from static data on life stage occurrences. Here, we first show theoretically, using a two‐life stage simulation model, how both temporal range shift and ontogenetic effects can lead to similar divergent occurrences between adults and juveniles (juvenile divergence). We further demonstrate that juvenile divergence can unambiguously be attributed to ontogenetic effects, when juveniles diverge from adults in opposite direction to their temporal shift along the environmental gradient. Second, to empirically test whether ontogenetic effects are an important driver of divergent occurrences across Europe, we use repeated national forest inventories from Sweden, Germany and Spain to assess juvenile divergence and temporal shift for 40 tree species along large‐scale climatic gradients. About half of the species‐country combinations had significant juvenile divergences along heat sum and water availability gradients. Only a quarter of the tree species had significant detectable temporal shifts within the observation period. Furthermore, significant juvenile divergences were frequently associated with opposite temporal shifts, indicating that ontogenetic effects are a relevant cause of divergent occurrences between life stages. Our study furthers the understanding of ontogenetic effects and challenges the practice of inferring climate change impacts from static data.
Ecography arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Regensburg Publication ServerArticle . 2022Data sources: University of Regensburg Publication ServerBiblioteca Digital de la Universidad de AlcaláArticle . 2022License: CC BYData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.06042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 292visibility views 292 download downloads 79 Powered bymore_vert Ecography arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Regensburg Publication ServerArticle . 2022Data sources: University of Regensburg Publication ServerBiblioteca Digital de la Universidad de AlcaláArticle . 2022License: CC BYData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.06042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 23 Feb 2021 United States, Switzerland, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/9q78n5tzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/9q78n5tzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 09 Jul 2024 France, Netherlands, France, Austria, Finland, Spain, Switzerland, Spain, Austria, SpainPublisher:Proceedings of the National Academy of Sciences Funded by:EC | TreeMortEC| TreeMortAuthors: Astigarraga, Julen; Esquivel-Muelbert, Adriane; Ruiz-Benito, Paloma; Rodríguez-Sánchez, Francisco; +13 AuthorsAstigarraga, Julen; Esquivel-Muelbert, Adriane; Ruiz-Benito, Paloma; Rodríguez-Sánchez, Francisco; Zavala, Miguel; Vilà-Cabrera, Albert; Schelhaas, Mart-Jan; Kunstler, Georges; Woodall, Christopher; Cienciala, Emil; Dahlgren, Jonas; Govaere, Leen; König, Louis; Lehtonen, Aleksi; Talarczyk, Andrzej; Liu, Daijun; Pugh, Thomas;Although climate change is expected to drive tree species toward colder and wetter regions of their distribution, broadscale empirical evidence is lacking. One possibility is that past and present human activities in forests obscure or alter the effects of climate. Here, using data from more than two million monitored trees from 73 widely distributed species, we quantify changes in tree species density within their climatic niches across Northern Hemisphere forests. We observe a reduction in mean density across species, coupled with a tendency toward increasing tree size. However, the direction and magnitude of changes in density exhibit considerable variability between species, influenced by stand development that results from previous stand-level disturbances. Remarkably, when accounting for stand development, our findings show a significant change in density toward cold and wet climatic conditions for 43% of the species, compared to only 14% of species significantly changing their density toward warm and arid conditions in both early- and late-development stands. The observed changes in climate-driven density showed no clear association with species traits related to drought tolerance, recruitment and dispersal capacity, or resource use, nor with the temperature or aridity affiliation of the species, leaving the underlying mechanism uncertain. Forest conservation policies and associated management strategies might want to consider anticipated long-term species range shifts alongside the integration of contemporary within-distribution density changes.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2314899121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 164visibility views 164 download downloads 16 Powered bymore_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2314899121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, Norway, France, Spain, NorwayPublisher:Springer Science and Business Media LLC Funded by:ANR | DECLIC, ANR | REFORCE, EC | BACCARAANR| DECLIC ,ANR| REFORCE ,EC| BACCARAMarianne Bernard; Julien Barrere; Xavier Morin; Sonia Saïd; Vincent Boulanger; Elena Granda; Raquel Benavides; Hervé Jactel; Marco Heurich; Sonia G. Rabasa; Fernando Valladares; Georges Kunstler;handle: 11250/3172068 , 20.500.14352/118391
Abstract Key message In European mountain forests, the growth of silver fir (Abies alba Mill.), sycamore maple (Acer pseudoplatanus L.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.) seedlings is more strongly affected by ungulate browsing than by elevation. But, the constraint exerted by ungulates, in particular the probability for seedlings to be browsed, increases with elevation for most species. Context While concerns about mountain forest regeneration rise due to their high vulnerability to climate change, the increase in wild ungulate populations and the expansion of their range in the last decades exert an additional constraint on the survival and growth of young trees. Understanding how this constraint can vary with elevation is thus a key to assess the consequences of this population increase for the regeneration of mountain forests. Aims In this study, we investigate the effect of elevation on (i) the occurrence of browsing for seedlings and on (ii) the reduction in seedling growth induced by ungulate browsing. Methods We monitored height growth and browsing occurrence on silver fir, sycamore maple, European beech and Norway spruce seedlings across seven elevation gradients (from 400 to 2013 m) located from France to northern Sweden. Results Seedlings of the two most palatable species—fir and maple—were more likely to be browsed at high elevation while the opposite effect was observed for spruce. Browsing strongly reduced seedling growth for all species but Norway spruce, while elevation had no direct effect on seedling growth. This browsing-induced growth reduction was stronger at high elevation for fir seedlings. Conclusions Browsing is overall a stronger constraint on seedling growth than elevation for four dominant species of European mountain forests. Elevation can, however, affect both browsing probability and the effect of browsing on seedling growth. Our results highlight the importance of taking into account ungulate pressure and its interactive effect with elevation when forecasting the regeneration of mountain forests under a changing climate.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/253407Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13595-024-01226-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/253407Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13595-024-01226-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 18 Jan 2022 France, United States, SwitzerlandPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceSharma, Shubhi; Andrus, Robert; Bergeron, Yves; Bogdziewicz, Michal; Bragg, Don; Brockway, Dale; Cleavitt, Natalie; Courbaud, Benoît; Das, Adrian; Dietze, Michael; Fahey, Timothy; Franklin, Jerry; Gilbert, Gregory; Greenberg, Cathryn; Guo, Qinfeng; Hille Ris Lambers, Janneke; Ibanez, Ines; Johnstone, Jill; Kilner, Christopher; Knops, Johannes; Koenig, Walter; Kunstler, Georges; Lamontagne, Jalene; Macias, Diana; Moran, Emily; Myers, Jonathan; Parmenter, Robert; Pearse, Ian; Poulton-Kamakura, Renata; Redmond, Miranda; Reid, Chantal; Rodman, Kyle; Scher, C. Lane; Schlesinger, William; Steele, Michael; Stephenson, Nathan; Swenson, Jennifer; Swift, Margaret; Veblen, Thomas; Whipple, Amy; Whitham, Thomas; Wion, Andreas; Woodall, Christopher; Zlotin, Roman; Clark, James;Significance Suitable habitats for forest trees may be shifting fast with recent climate change. Studies tracking the shift in suitable habitat for forests have been inconclusive, in part because responses in tree fecundity and seedling establishment can diverge. Analysis of both components at a continental scale reveals a poleward migration of northern species that is in progress now. Recruitment and fecundity both contribute to poleward spread in the West, while fecundity limits spread in the East, despite a fecundity hotspot in the Southeast. Fecundity limitation on population spread can confront conservation and management efforts with persistent disequilibrium between forest diversity and rapid climate change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/3747p5nqData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversité Grenoble Alpes: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116691118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/3747p5nqData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversité Grenoble Alpes: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116691118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Czech Republic, Austria, Finland, Austria, Netherlands, Netherlands, Spain, Spain, France, Portugal, Czech Republic, FinlandPublisher:Springer Science and Business Media LLC Funded by:EC | TreeMort, EC | ForMMI, UKRI | MEMBRA: Understanding Mem... +5 projectsEC| TreeMort ,EC| ForMMI ,UKRI| MEMBRA: Understanding Memory of UK Treescapes for Better Resilience and Adaptation ,FWF| Land use, biological invasions and local species diversity ,AKA| Sensing plant Biogenic Volatile Organic Compounds (SensBVOCs) ,EC| CLIMB-FOREST ,UKRI| NSFDEB-NERC: Gigante: Quantifying and upscaling the causes and drivers of death for giant tropical trees ,UKRI| NCEO LTS-SLiu, Daijun; Esquivel-Muelbert, Adriane; Acil, Nezha; Astigarraga, Julen; Cienciala, Emil; Fridman, Jonas; Kunstler, Georges; Matthews, Thomas; Ruiz-Benito, Paloma; Sadler, Jonathan; Schelhaas, Mart-Jan; Suvanto, Susanne; Talarczyk, Andrzej; Woodall, Christopher; Zavala, Miguel; Zhang, Chao; Pugh, Thomas;AbstractIncreasing water stress is emerging as a global phenomenon, and is anticipated to have a marked impact on forest function. The role of tree functional strategies is pivotal in regulating forest fitness and their ability to cope with water stress. However, how the functional strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-established. By combining eight water-stress-related functional traits with forest inventory data from the USA and Europe, we investigated the community-level trait coordination and the biogeographic patterns of trait associations for woody plants, and analysed the relationships between the trait associations and climate factors. We find that the trait associations at the community level are consistent with those found at the species level. Traits associated with acquisitive-conservative strategies forms one dimension of variation, while leaf turgor loss point, associated with stomatal water regulation strategy, loads along a second dimension. Surprisingly, spatial patterns of community-level trait association are better explained by temperature than by aridity, suggesting a temperature-driven adaptation. These findings provide a basis to build predictions of forest response under water stress, with particular potential to improve simulations of tree mortality and forest biomass accumulation in a changing climate.
Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555363Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositório da Universidade dos AçoresArticle . 2024Data sources: Repositório da Universidade dos AçoresHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-53160-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 105visibility views 105 download downloads 15 Powered bymore_vert Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555363Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositório da Universidade dos AçoresArticle . 2024Data sources: Repositório da Universidade dos AçoresHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-53160-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Wiley Jeremy W. Lichstein; Hongcheng Zeng; John P. Caspersen; Mark C. Vanderwel; Mark C. Vanderwel; Georges Kunstler;doi: 10.1111/ele.12574
pmid: 26913575
AbstractEcologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental‐scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species‐independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age‐dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species‐dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).
Hyper Article en Lig... arrow_drop_down Ecology LettersArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Ecology LettersArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, France, ItalyPublisher:Wiley Funded by:UKRI | NI: MAST-NET: masting res..., UKRI | Adapting to the Challenge..., EC | ForestFutureUKRI| NI: MAST-NET: masting responses to climate change and impacts on ecosystems ,UKRI| Adapting to the Challenges of a Changing Environment (ACCE) ,EC| ForestFutureFoest, Jessie J.; Bogdziewicz, Michał; Pesendorfer, Mario B.; Ascoli, Davide; Cutini, Andrea; Nussbaumer, Anita; Verstraeten, Arne; Beudert, Burkhard; Chianucci, Francesco; Mezzavilla, Francesco; Gratzer, Georg; Kunstler, Georges; Meesenburg, Henning; Wagner, Markus; Mund, Martina; Cools, Nathalie; Vacek, Stanislav; Schmidt, Wolfgang; Vacek, Zdeněk; Hacket‐Pain, Andrew;AbstractClimate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest‐forming tree species often mast, i.e. reproduce through synchronised year‐to‐year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan‐European species. Here, we analysed 50 long‐term datasets of population‐level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site‐specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population‐level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.
Archivio Istituziona... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Finland, Germany, Finland, FrancePublisher:Wiley Funded by:EC | RESONATE, AKA | Potential of functional d...EC| RESONATE ,AKA| Potential of functional diversity for increasing the disturbance resiliency of forests and forest-based socio-ecological systems (FUNPOTENTIAL)Kulha, Niko; Honkaniemi, Juha; Barrere, Julien; Brandl, Susanne; Cordonnier, Thomas; Korhonen, Kari T.; Kunstler, Georges; Paul, Carola; Reineking, Björn; Peltoniemi, Mikko;Abstract Forest stand densities are increasing in the boreal and temperate biomes, suggesting that tree‐tree competition is intensifying. Anticipating the consequences of this intensified competition is difficult because competition‐induced mortality may depend not only on the occurrence of extreme climatic events such as drought, but also on stand composition, since tree species differ in their ability to compete and tolerate competition. A better understanding of the effects of stand composition and drought on competition‐induced mortality would help to anticipate future changes in forest ecosystems. We studied the tree‐level probability of competition‐induced mortality using National Forest Inventory data from three European countries (Finland, France and Germany), covering a latitudinal gradient from the Mediterranean to the Arctic. We investigated how (i) the proportion of conspecifics, (ii) the shade tolerance (ST) of the focal tree and its competitors and (iii) drought events modify the effect of competition on tree mortality. We used a generalized linear mixed model on a dataset of 461,109 trees representing 39 species on 48,088 individual plots. Competition, measured as the basal area of larger trees, was a stronger driver of background mortality (BM) than tree size and climate. A higher proportion of conspecifics increased the competition effect on mortality, showing that conspecific individuals had a higher competitive effect compared to heterospecific individuals. The competition effect on mortality also increased as a function of the ST of neighbouring trees, suggesting an increased shading effect. A higher ST of a focal tree decreased the competition effect on mortality. Drought anomalies increased the competition effect, resulting in a higher mortality probability for the most suppressed trees. Synthesis. Competition was the main driver of background mortality. Increasing stand density increased competition‐induced tree mortality in both monospecific and mixed stands, but to different extents depending on the proportion of conspecifics and tree species shade tolerance (ST). Drought periods increase mortality, especially among the most suppressed trees, suggesting an interaction between competitive status and drought. Incorporating more detailed information on stand composition and tree species ST into tree mortality models will improve our understanding of forest dynamics in a changing climate.
Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Wiley Funded by:AKA | Potential of functional d..., ANR | DECLIC, EC | RESONATEAKA| Potential of functional diversity for increasing the disturbance resiliency of forests and forest-based socio-ecological systems (FUNPOTENTIAL) ,ANR| DECLIC ,EC| RESONATEAuthors: Barrere, Julien; Reineking, Björn; Jaunatre, Maxime; Kunstler, Georges;Tree species composition is known to influence forest productivity, but its effect on forest resilience to disturbances such as storms remains largely unexplored. Furthermore, climate is likely to influence forest resilience directly but also to influence the effect of tree species composition on resilience. In Europe, storm-induced tree mortality is currently increasing across all climatic biomes. Understanding the drivers of forest resilience to storms and its consistency across climates appears to be crucial for predicting the consequences of climate change for European forests.In this study, we used a simulation approach with an integral projection model calibrated with National Forest Inventory (NFI) data at the European scale. We restricted our simulations to tree species assemblages observed in the NFI data, covering a species diversity gradient nested within a climate gradient. We quantified functional diversity and the mean position of each species assemblage at equilibrium on two functional axis: (i) conservative versus fast growing and (ii) low versus high recruitment. We disturbed each species assemblage from equilibrium using species-specific storm disturbance mortality probabilities and quantified the assemblages' resistance (inverse of immediate basal area loss), recovery (slope of post-disturbance increase in basal area) and resilience (inverse of the cumulative deviation of basal area from the undisturbed state).We found that on average, species-rich assemblages had higher recovery and resilience to storm disturbance, while functional diversity improved resistance and recovery. When analysing how this effect varied with climate, we found that diversity significantly increased resistance and resilience in the climatic margins only. Finally, we found that storm resilience was also driven by species mean position along both functional axes. In particular, the conservative-productive axis had an effect two to three times greater than diversity: forests dominated by conservative species were more resistant and resilient, but had lower recovery than species assemblages dominated by fast-growing species.Taken together, these results show that climate and tree species composition interact to control the ability of forests to resist and recover from a storm disturbance through both direct and indirect effects. As such, our findings should help to better anticipate climate change consequences for forest ecosystems. International audience
HAL Descartes arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL Descartes arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 Spain, France, Spain, GermanyPublisher:Wiley Heiland, Lukas; Kunstler, Georges; Ruiz-Benito, Paloma; Buras, Allan; Dahlgren, Jonas; Hülsmann, Lisa;handle: 10017/50741
Recent climate warming has fueled interest into climate‐driven range shifts of tree species. A common approach to detect range shifts is to compare the divergent occurrences between juvenile and adult trees along environmental gradients using static data. Divergent occurrences between life stages can, however, also be caused by ontogenetic effects. These include shifts of the viable environmental conditions throughout development (‘ontogenetic niche shift') as well as demographic dependencies that constrain the possible occurrence of subsequent life stages. Whether ontogenetic effects are an important driver of divergent occurrences between juvenile and adult trees along large‐scale climatic gradients is largely unknown. It is, however, critical in evaluating whether impacts of environmental change can be inferred from static data on life stage occurrences. Here, we first show theoretically, using a two‐life stage simulation model, how both temporal range shift and ontogenetic effects can lead to similar divergent occurrences between adults and juveniles (juvenile divergence). We further demonstrate that juvenile divergence can unambiguously be attributed to ontogenetic effects, when juveniles diverge from adults in opposite direction to their temporal shift along the environmental gradient. Second, to empirically test whether ontogenetic effects are an important driver of divergent occurrences across Europe, we use repeated national forest inventories from Sweden, Germany and Spain to assess juvenile divergence and temporal shift for 40 tree species along large‐scale climatic gradients. About half of the species‐country combinations had significant juvenile divergences along heat sum and water availability gradients. Only a quarter of the tree species had significant detectable temporal shifts within the observation period. Furthermore, significant juvenile divergences were frequently associated with opposite temporal shifts, indicating that ontogenetic effects are a relevant cause of divergent occurrences between life stages. Our study furthers the understanding of ontogenetic effects and challenges the practice of inferring climate change impacts from static data.
Ecography arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Regensburg Publication ServerArticle . 2022Data sources: University of Regensburg Publication ServerBiblioteca Digital de la Universidad de AlcaláArticle . 2022License: CC BYData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.06042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 292visibility views 292 download downloads 79 Powered bymore_vert Ecography arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Regensburg Publication ServerArticle . 2022Data sources: University of Regensburg Publication ServerBiblioteca Digital de la Universidad de AlcaláArticle . 2022License: CC BYData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.06042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 23 Feb 2021 United States, Switzerland, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/9q78n5tzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/9q78n5tzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 09 Jul 2024 France, Netherlands, France, Austria, Finland, Spain, Switzerland, Spain, Austria, SpainPublisher:Proceedings of the National Academy of Sciences Funded by:EC | TreeMortEC| TreeMortAuthors: Astigarraga, Julen; Esquivel-Muelbert, Adriane; Ruiz-Benito, Paloma; Rodríguez-Sánchez, Francisco; +13 AuthorsAstigarraga, Julen; Esquivel-Muelbert, Adriane; Ruiz-Benito, Paloma; Rodríguez-Sánchez, Francisco; Zavala, Miguel; Vilà-Cabrera, Albert; Schelhaas, Mart-Jan; Kunstler, Georges; Woodall, Christopher; Cienciala, Emil; Dahlgren, Jonas; Govaere, Leen; König, Louis; Lehtonen, Aleksi; Talarczyk, Andrzej; Liu, Daijun; Pugh, Thomas;Although climate change is expected to drive tree species toward colder and wetter regions of their distribution, broadscale empirical evidence is lacking. One possibility is that past and present human activities in forests obscure or alter the effects of climate. Here, using data from more than two million monitored trees from 73 widely distributed species, we quantify changes in tree species density within their climatic niches across Northern Hemisphere forests. We observe a reduction in mean density across species, coupled with a tendency toward increasing tree size. However, the direction and magnitude of changes in density exhibit considerable variability between species, influenced by stand development that results from previous stand-level disturbances. Remarkably, when accounting for stand development, our findings show a significant change in density toward cold and wet climatic conditions for 43% of the species, compared to only 14% of species significantly changing their density toward warm and arid conditions in both early- and late-development stands. The observed changes in climate-driven density showed no clear association with species traits related to drought tolerance, recruitment and dispersal capacity, or resource use, nor with the temperature or aridity affiliation of the species, leaving the underlying mechanism uncertain. Forest conservation policies and associated management strategies might want to consider anticipated long-term species range shifts alongside the integration of contemporary within-distribution density changes.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2314899121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 164visibility views 164 download downloads 16 Powered bymore_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2314899121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, Norway, France, Spain, NorwayPublisher:Springer Science and Business Media LLC Funded by:ANR | DECLIC, ANR | REFORCE, EC | BACCARAANR| DECLIC ,ANR| REFORCE ,EC| BACCARAMarianne Bernard; Julien Barrere; Xavier Morin; Sonia Saïd; Vincent Boulanger; Elena Granda; Raquel Benavides; Hervé Jactel; Marco Heurich; Sonia G. Rabasa; Fernando Valladares; Georges Kunstler;handle: 11250/3172068 , 20.500.14352/118391
Abstract Key message In European mountain forests, the growth of silver fir (Abies alba Mill.), sycamore maple (Acer pseudoplatanus L.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.) seedlings is more strongly affected by ungulate browsing than by elevation. But, the constraint exerted by ungulates, in particular the probability for seedlings to be browsed, increases with elevation for most species. Context While concerns about mountain forest regeneration rise due to their high vulnerability to climate change, the increase in wild ungulate populations and the expansion of their range in the last decades exert an additional constraint on the survival and growth of young trees. Understanding how this constraint can vary with elevation is thus a key to assess the consequences of this population increase for the regeneration of mountain forests. Aims In this study, we investigate the effect of elevation on (i) the occurrence of browsing for seedlings and on (ii) the reduction in seedling growth induced by ungulate browsing. Methods We monitored height growth and browsing occurrence on silver fir, sycamore maple, European beech and Norway spruce seedlings across seven elevation gradients (from 400 to 2013 m) located from France to northern Sweden. Results Seedlings of the two most palatable species—fir and maple—were more likely to be browsed at high elevation while the opposite effect was observed for spruce. Browsing strongly reduced seedling growth for all species but Norway spruce, while elevation had no direct effect on seedling growth. This browsing-induced growth reduction was stronger at high elevation for fir seedlings. Conclusions Browsing is overall a stronger constraint on seedling growth than elevation for four dominant species of European mountain forests. Elevation can, however, affect both browsing probability and the effect of browsing on seedling growth. Our results highlight the importance of taking into account ungulate pressure and its interactive effect with elevation when forecasting the regeneration of mountain forests under a changing climate.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/253407Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13595-024-01226-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/253407Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13595-024-01226-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 18 Jan 2022 France, United States, SwitzerlandPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceSharma, Shubhi; Andrus, Robert; Bergeron, Yves; Bogdziewicz, Michal; Bragg, Don; Brockway, Dale; Cleavitt, Natalie; Courbaud, Benoît; Das, Adrian; Dietze, Michael; Fahey, Timothy; Franklin, Jerry; Gilbert, Gregory; Greenberg, Cathryn; Guo, Qinfeng; Hille Ris Lambers, Janneke; Ibanez, Ines; Johnstone, Jill; Kilner, Christopher; Knops, Johannes; Koenig, Walter; Kunstler, Georges; Lamontagne, Jalene; Macias, Diana; Moran, Emily; Myers, Jonathan; Parmenter, Robert; Pearse, Ian; Poulton-Kamakura, Renata; Redmond, Miranda; Reid, Chantal; Rodman, Kyle; Scher, C. Lane; Schlesinger, William; Steele, Michael; Stephenson, Nathan; Swenson, Jennifer; Swift, Margaret; Veblen, Thomas; Whipple, Amy; Whitham, Thomas; Wion, Andreas; Woodall, Christopher; Zlotin, Roman; Clark, James;Significance Suitable habitats for forest trees may be shifting fast with recent climate change. Studies tracking the shift in suitable habitat for forests have been inconclusive, in part because responses in tree fecundity and seedling establishment can diverge. Analysis of both components at a continental scale reveals a poleward migration of northern species that is in progress now. Recruitment and fecundity both contribute to poleward spread in the West, while fecundity limits spread in the East, despite a fecundity hotspot in the Southeast. Fecundity limitation on population spread can confront conservation and management efforts with persistent disequilibrium between forest diversity and rapid climate change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/3747p5nqData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversité Grenoble Alpes: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116691118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/3747p5nqData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaUniversité Grenoble Alpes: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116691118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Czech Republic, Austria, Finland, Austria, Netherlands, Netherlands, Spain, Spain, France, Portugal, Czech Republic, FinlandPublisher:Springer Science and Business Media LLC Funded by:EC | TreeMort, EC | ForMMI, UKRI | MEMBRA: Understanding Mem... +5 projectsEC| TreeMort ,EC| ForMMI ,UKRI| MEMBRA: Understanding Memory of UK Treescapes for Better Resilience and Adaptation ,FWF| Land use, biological invasions and local species diversity ,AKA| Sensing plant Biogenic Volatile Organic Compounds (SensBVOCs) ,EC| CLIMB-FOREST ,UKRI| NSFDEB-NERC: Gigante: Quantifying and upscaling the causes and drivers of death for giant tropical trees ,UKRI| NCEO LTS-SLiu, Daijun; Esquivel-Muelbert, Adriane; Acil, Nezha; Astigarraga, Julen; Cienciala, Emil; Fridman, Jonas; Kunstler, Georges; Matthews, Thomas; Ruiz-Benito, Paloma; Sadler, Jonathan; Schelhaas, Mart-Jan; Suvanto, Susanne; Talarczyk, Andrzej; Woodall, Christopher; Zavala, Miguel; Zhang, Chao; Pugh, Thomas;AbstractIncreasing water stress is emerging as a global phenomenon, and is anticipated to have a marked impact on forest function. The role of tree functional strategies is pivotal in regulating forest fitness and their ability to cope with water stress. However, how the functional strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-established. By combining eight water-stress-related functional traits with forest inventory data from the USA and Europe, we investigated the community-level trait coordination and the biogeographic patterns of trait associations for woody plants, and analysed the relationships between the trait associations and climate factors. We find that the trait associations at the community level are consistent with those found at the species level. Traits associated with acquisitive-conservative strategies forms one dimension of variation, while leaf turgor loss point, associated with stomatal water regulation strategy, loads along a second dimension. Surprisingly, spatial patterns of community-level trait association are better explained by temperature than by aridity, suggesting a temperature-driven adaptation. These findings provide a basis to build predictions of forest response under water stress, with particular potential to improve simulations of tree mortality and forest biomass accumulation in a changing climate.
Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555363Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositório da Universidade dos AçoresArticle . 2024Data sources: Repositório da Universidade dos AçoresHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-53160-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 105visibility views 105 download downloads 15 Powered bymore_vert Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555363Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositório da Universidade dos AçoresArticle . 2024Data sources: Repositório da Universidade dos AçoresHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2024License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-53160-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu