- home
- Advanced Search
Filters
Year range
-chevron_right GOSource
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV J. Ibarra-Bahena; R.J. Romero; L. Velazquez-Avelar; C.V. Valdez-Morales; Y.R. Galindo-Luna;Abstract Single Stage Heat Transformer (SSHT) is a device to recovery waste heat by a thermodynamic cycle. In this paper an experimental SSHT prototype was analyzed. This prototype operates with Water/Carrol mixture. Four test runs were carried out in order to evaluate the performance. The heat powers were measured from 0.99 to 1.35 kW for the generator, 0.97–1.33 kW for the condenser, 0.99–1.35 kW for the evaporator and 0.69–0.81 kW for the absorber. Experimental Gross Temperature Lift (GTL) was values from 18.5 to 22.2 °C and the dimensionless Coefficient of Performance (COP) was calculated for those operating conditions from 0.30 to 0.35.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2014.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 523 citations 523 popularity Top 1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2014.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Jonathan Ibarra-Bahena; Wilfrido Rivera; Sandra Daniela Nanco-Mejía; Rosenberg J. Romero; +2 AuthorsJonathan Ibarra-Bahena; Wilfrido Rivera; Sandra Daniela Nanco-Mejía; Rosenberg J. Romero; Eduardo Venegas-Reyes; Ulises Dehesa-Carrasco;In absorption systems using the aqueous lithium bromide mixture, the Coefficient of Performance is affected by the desorber. The main function of this component is to separate the refrigerant fluid from the working mixture. In conventional boiling desorbers, constant heat flux and vacuum pressure conditions are necessary to carry out the desorption process, and usually, the absorbers are heavy and bulky; thus, they are not suitable in compact systems. In this study, a membrane desorber was evaluated, operating at atmospheric pressure conditions with a water/lithium bromide solution with a concentration of 49.6% w/w. The effects of the solution temperature, solution mass flow, and condensation temperature on the desorption rate were analyzed. The maximum desorption rate value was 6.1 kg/m2h with the following operation conditions: the solution temperature at 95.2 °C, the solution mass flow at 4.00 × 10−2 kg/s, and the cooling water temperature at 30.1 °C. On the other hand, the minimum value was 1.1 kg/m2h with the solution temperature at 80.2 °C, the solution mass flow at 2.50 × 10−2 kg/s, and the cooling water temperature at 45.1 °C. The thermal energy efficiency, defined as the ratio between the thermal energy used to evaporate the refrigerant fluid with respect to the total thermal energy entering the membrane desorber, varied from 0.08 to 0.30. According to the results, a high solution mass flow, a high solution temperature, and a low condensation temperature lead to an increase in the desorption rate; however, a low solution mass flow enhanced the thermal energy efficiency. The proposed membrane desorber could replace a conventional boiling desorber, especially in absorption cooling systems that operate at high condensation temperatures as in warm weather regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes11070474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes11070474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV J. Ibarra – Bahena; U. Dehesa – Carrasco; M. Montiel – González; R.J. Romero; M.A. Basurto – Pensado; O. Hernández – Cristóbal;Abstract A conventional desorber in the Absorption Heat Transformer (AHT) cycle requires a constant heat flux and vacuum pressure conditions to boil the working mixture and separate the working fluid. In this paper, an Air Gap Membrane Distillation (AGMD) unit was adapted as desorber/condenser with water/Carrol mixture in order to demonstrate the feasibility of the desorption process at atmospheric pressure conditions. Two membranes with 0.22 and 0.45 μm pore sizes were used and three temperature levels were tested. The maximum increase in the concentration (Δ X ) was 1.54% w/w (from 60.63 to 62.17% w/w) with a membrane with pore size up to 0.45 μm and a solution temperature of 82.7 °C. The maximum thermal process effectiveness was 17.7% (on average) with a membrane with pore size up to 0.22 μm and a solution temperature of 84.4 °C. Due to the corrosion process, a fouling particle by iron oxide was found on the membrane; this fouling layer could promote the “wetting” process in the membrane after a long operating time.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2016.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2016.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Javier Alejandro Hernández-Magallanes; Jonathan Ibarra-Bahena; Wilfrido Rivera; Rosenberg J. Romero; +4 AuthorsJavier Alejandro Hernández-Magallanes; Jonathan Ibarra-Bahena; Wilfrido Rivera; Rosenberg J. Romero; Efraín Gómez-Arias; Ulises Dehesa-Carrasco; Orlando Miguel Espinoza-Ojeda; Sanal Kozhiparambil Chandran;doi: 10.3390/app9061220
A thermodynamic analysis of a half-effect absorption cooling system powered by a low-enthalpy geothermal source was carried out. This paper presents modeling of the half-effect absorption cooling system operating with an ammonia/lithium nitrate mixture and based on the first and second laws of thermodynamics, using as energy inputs real data from two geothermal wells located at Las Tres Vírgenes volcanic complex, Baja California Sur, México. Plots of coefficients of performance and exergy efficiency against condenser, evaporator, and generator temperatures are presented for the half-effect cooling system. The results showed that the system was able to operate at generation temperatures between 56 and 70 °C, which were supplied by the geothermal wells in order to produce cooling at temperatures as low as −16 °C, achieving coefficients of performance between 0.10 and 0.36, while the exergy efficiency varied from 0.15 to 0.40 depending on the system operating temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9061220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9061220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jonathan Ibarra-Bahena; Ulises Dehesa-Carrasco; Yuridiana Rocio Galindo-Luna; Iván Leonardo Medina-Caballero; +1 AuthorsJonathan Ibarra-Bahena; Ulises Dehesa-Carrasco; Yuridiana Rocio Galindo-Luna; Iván Leonardo Medina-Caballero; Wilfrido Rivera;For absorption cooling cycles using water as a refrigerant, H2O/LiCl mixtures are suitable for replacing conventional H2O/LiBr mixtures. In addition, membrane devices can be used to develop compact and lighter absorption systems, and they can operate with H2O/LiCl mixtures. The present paper describes an experimental evaluation of a membrane desorber/condenser operating at atmospheric pressure. Two operation modes were analyzed: continuous cycle operation and intermittent operation. For the first operation mode, the maximum desorption rate was 3.49 kg/h·m2, with a solution temperature of 90.3 °C and a condensation temperature of 25.1 °C. The lowest desorption rate value was 0.26 kg/h·m2, with a solution temperature of 75.4 °C and a condensation temperature of 40.1 °C. In the second mode, after three operating hours, the refrigerant fluid produced, per 1 m2 of membrane area, 7.7, 5.6, 4.3, and 2.2 kg, at solution temperatures of 90.3, 85.3, 80.4, and 75.4 °C, respectively. A one-dimension heat and mass transfer model is presented. The calculated values of desorption rate and outlet temperatures were compared with the experimental data; a square correlation coefficient of 0.9929 was reached for the desorption rate; meanwhile, for the outlet solution temperatures and the outlet cooling-water temperatures, a square correlation coefficient up to 0.9991 was achieved. The membrane desorber has the advantages of operating at atmospheric-pressure conditions, high condensation temperature, the ability to use different saline solution working mixtures, and different operation methods. These advantages can lead to new absorption systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes12121184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes12121184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV J. Ibarra-Bahena; U. Dehesa-Carrasco; B. Rivas-Herrera; Rosenberg J. Romero; Wilfrido Rivera;Abstract Conventional desorbers in absorption systems are in general bulky and heavy; hence they are not usually used in compact systems. In addition, depending on the working mixture, they operate in a vacuum or at high pressures, which is in both cases a great disadvantage. In this study, a desorber/condenser was tested and modelled, using the Air Gap Membrane Distillation (AGMD) process, operating at atmospheric pressure conditions, with water/lithium bromide mixture for absorption system applications. The desorber/condenser used a membrane with a 0.45 μm pore size. Thirty-six experimental test runs were carried out at different operating conditions. A one-dimensional heat and mass transfer model was developed in order to describe the vapour water desorption from an aqueous LiBr mixture at atmospheric pressure conditions. The refrigerant desorption rate for the experimental conditions varied from 0.30 to 9.69 kg/m 2 h. The theoretical refrigerant desorption rate calculated by the heat and mass transfer model agreed with the experimental data within ±10%. The results showed that the highest mass transfer resistance was at the boundary layer (1/K bl ) which increases with the increment of X LiBr and decreases with the increment of T LiBr .
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2017.05.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2017.05.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC E. Gómez-Arias; J. Ibarra-Bahena; Rosenberg J. Romero; A. Rodríguez-Martínez; M. Montiel-González; L. Velazquez-Avelar;The generator is the starter device of single stage heat transformer (SSHT) and its characteristics have main effects on the overall efficiency of this kind of absorption machines. This article reports a study of the generation of steam and changes in the concentration of the working solution (Water/Carrol mixture) into a plate heat exchanger as a function of its horizontal and vertical position by gravity effect. It is considered the analysis of six experimental tests; two were evaluated in a plate heat exchanger in a horizontal position and four in a vertical position (90 degree inclination). The generation of steam and increased concentration of the working solution are more sensitive to the vertical position of exchanger than in horizontal position. The results of numerical-experimental analysis indicates that a heat exchanger in horizontal position, the steam generation and the change in the concentration of the working solution occurring in the middle of the plate (or at greater distance depending to the thermodynamic conditions) and instantly in vertical position (at the input of the plate).
Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-014-0742-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-014-0742-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Eduardo Venegas-Reyes; U. Dehesa-Carrasco; M. Montiel-González; Rosenberg J. Romero; +1 AuthorsEduardo Venegas-Reyes; U. Dehesa-Carrasco; M. Montiel-González; Rosenberg J. Romero; J. Ibarra-Bahena;Abstract Parabolic Trough Collectors (PTC) provides thermal solar energy at medium temperature, and in order to increase the thermal level, the solar system can be coupled to upgrading devices, such as Absorption Heat Transformers (AHT). In this paper, a feasibility analysis of the PTC system operating as thermal source of an AHT is described. The PTC and AHT units were tested and, based on the experimental data of each system, a heat transfer analysis was carried out in order to propose a single system. Two case studies were analysed: In the first, the evaporator temperature was close to the generator temperature (84.6 and 85.2 °C respectively) and a simultaneous flow from the heat source was used; in the second case, the evaporator temperature was lower than the generator temperature (79.6 and 86.7 °C respectively) and a serial flow from the heat source was proposed. Results show that, for the absorber temperature of 101 °C, the calculated generator and evaporator heat loads were 1.50 and 1.34 kW respectively in Case 1, and 0.86 kW for both components in Case 2. For Case 1, the PTC system required 6.0 m 2 in order to provide two mass flows of 6.00 × 10 −02 and 5.35 × 10 −02 kg/s for generator and evaporator at 89 °C. For Case 2, one mass flow of 6.60 × 10 −02 kg/s at 89 °C for generator and evaporator must be satisfied by a 3.7 m 2 PTC system.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.05.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.05.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: J. Ibarra-Bahena; C.V. Valdez-Morales; Rosenberg J. Romero;Abstract This paper proposes an accurate estimation for the experimental thermodynamic performance of a Single Stage Absorption Heat Transformer (SSHT). The calculation includes five heat and mass transfer effectiveness factors of the components in the SSHT. The evaporator, condenser and heat exchanger effectiveness is based on the method of Number of transfer units (NTU). Absorber and generator effectiveness are correlated with mass transfer, concentrations of the working mixture, and external powers, respectively. Calculations according to the operating conditions of the experimental tests were carried out in a 4 kW absorption heat transformer. The experiment was performed with the water/Carrol mixture with concentrations from 66 to 69%w; the actual Coefficient of Performance (COP a ) values were from 0.28 to 0.35, while the classical model overestimates these values from 0.47 to 0.49, respectively. The predicted COPη with these effectiveness factors is much more accurate (error factor lower than 92.25%) with COP a .
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2017.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2017.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Esmeralda Cervantes-Rendón; Jonathan Ibarra-Bahena; Luis E. Cervera-Gómez; Rosenberg J. Romero; +3 AuthorsEsmeralda Cervantes-Rendón; Jonathan Ibarra-Bahena; Luis E. Cervera-Gómez; Rosenberg J. Romero; Jesús Cerezo; Antonio Rodríguez-Martínez; Ulises Dehesa-Carrasco;doi: 10.3390/su141710958
A reverse osmosis system driven by photovoltaic energy is an eco-friendly and sustainable way to produce freshwater in rural areas without connection to a power grid and with available brackish water sources. This paper describes a project where a photovoltaic-driven low-pressure reverse osmosis system (LPRO-PV) was designed, tested under laboratory conditions, and installed in Samalayuca, Chihuahua, Mexico, to evaluate the technical feasibility and social impact of this technology. The LPRO-PV system was tested with synthetic water with a salinity of 2921 ± 62.3 mg/L; the maximum freshwater volume produced was 1.8 ± 0.06 m3/day with a salinity value of 91 ± 1.9 mg/L. The LPRO-PV system satisfied the basic freshwater requirements for a local family of three members for one year, including the mobility-restriction period due to the COVID-19 pandemic. The social evaluation analysis reflects the importance of considering the technical aspects derived from the experimental tests, as well as the users’ perception of the performance and operation of the system. As a result of the implementation of this technology and the benefits described by the users, they committed to the maintenance activities required for the LPRO-PV system’s operation. This technology has great potential to produce fresh water in arid and isolated regions with high-salinity groundwater sources, thus fulfilling the human right to safe and clean drinking water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141710958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141710958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV J. Ibarra-Bahena; R.J. Romero; L. Velazquez-Avelar; C.V. Valdez-Morales; Y.R. Galindo-Luna;Abstract Single Stage Heat Transformer (SSHT) is a device to recovery waste heat by a thermodynamic cycle. In this paper an experimental SSHT prototype was analyzed. This prototype operates with Water/Carrol mixture. Four test runs were carried out in order to evaluate the performance. The heat powers were measured from 0.99 to 1.35 kW for the generator, 0.97–1.33 kW for the condenser, 0.99–1.35 kW for the evaporator and 0.69–0.81 kW for the absorber. Experimental Gross Temperature Lift (GTL) was values from 18.5 to 22.2 °C and the dimensionless Coefficient of Performance (COP) was calculated for those operating conditions from 0.30 to 0.35.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2014.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 523 citations 523 popularity Top 1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2014.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Jonathan Ibarra-Bahena; Wilfrido Rivera; Sandra Daniela Nanco-Mejía; Rosenberg J. Romero; +2 AuthorsJonathan Ibarra-Bahena; Wilfrido Rivera; Sandra Daniela Nanco-Mejía; Rosenberg J. Romero; Eduardo Venegas-Reyes; Ulises Dehesa-Carrasco;In absorption systems using the aqueous lithium bromide mixture, the Coefficient of Performance is affected by the desorber. The main function of this component is to separate the refrigerant fluid from the working mixture. In conventional boiling desorbers, constant heat flux and vacuum pressure conditions are necessary to carry out the desorption process, and usually, the absorbers are heavy and bulky; thus, they are not suitable in compact systems. In this study, a membrane desorber was evaluated, operating at atmospheric pressure conditions with a water/lithium bromide solution with a concentration of 49.6% w/w. The effects of the solution temperature, solution mass flow, and condensation temperature on the desorption rate were analyzed. The maximum desorption rate value was 6.1 kg/m2h with the following operation conditions: the solution temperature at 95.2 °C, the solution mass flow at 4.00 × 10−2 kg/s, and the cooling water temperature at 30.1 °C. On the other hand, the minimum value was 1.1 kg/m2h with the solution temperature at 80.2 °C, the solution mass flow at 2.50 × 10−2 kg/s, and the cooling water temperature at 45.1 °C. The thermal energy efficiency, defined as the ratio between the thermal energy used to evaporate the refrigerant fluid with respect to the total thermal energy entering the membrane desorber, varied from 0.08 to 0.30. According to the results, a high solution mass flow, a high solution temperature, and a low condensation temperature lead to an increase in the desorption rate; however, a low solution mass flow enhanced the thermal energy efficiency. The proposed membrane desorber could replace a conventional boiling desorber, especially in absorption cooling systems that operate at high condensation temperatures as in warm weather regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes11070474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes11070474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV J. Ibarra – Bahena; U. Dehesa – Carrasco; M. Montiel – González; R.J. Romero; M.A. Basurto – Pensado; O. Hernández – Cristóbal;Abstract A conventional desorber in the Absorption Heat Transformer (AHT) cycle requires a constant heat flux and vacuum pressure conditions to boil the working mixture and separate the working fluid. In this paper, an Air Gap Membrane Distillation (AGMD) unit was adapted as desorber/condenser with water/Carrol mixture in order to demonstrate the feasibility of the desorption process at atmospheric pressure conditions. Two membranes with 0.22 and 0.45 μm pore sizes were used and three temperature levels were tested. The maximum increase in the concentration (Δ X ) was 1.54% w/w (from 60.63 to 62.17% w/w) with a membrane with pore size up to 0.45 μm and a solution temperature of 82.7 °C. The maximum thermal process effectiveness was 17.7% (on average) with a membrane with pore size up to 0.22 μm and a solution temperature of 84.4 °C. Due to the corrosion process, a fouling particle by iron oxide was found on the membrane; this fouling layer could promote the “wetting” process in the membrane after a long operating time.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2016.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2016.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Javier Alejandro Hernández-Magallanes; Jonathan Ibarra-Bahena; Wilfrido Rivera; Rosenberg J. Romero; +4 AuthorsJavier Alejandro Hernández-Magallanes; Jonathan Ibarra-Bahena; Wilfrido Rivera; Rosenberg J. Romero; Efraín Gómez-Arias; Ulises Dehesa-Carrasco; Orlando Miguel Espinoza-Ojeda; Sanal Kozhiparambil Chandran;doi: 10.3390/app9061220
A thermodynamic analysis of a half-effect absorption cooling system powered by a low-enthalpy geothermal source was carried out. This paper presents modeling of the half-effect absorption cooling system operating with an ammonia/lithium nitrate mixture and based on the first and second laws of thermodynamics, using as energy inputs real data from two geothermal wells located at Las Tres Vírgenes volcanic complex, Baja California Sur, México. Plots of coefficients of performance and exergy efficiency against condenser, evaporator, and generator temperatures are presented for the half-effect cooling system. The results showed that the system was able to operate at generation temperatures between 56 and 70 °C, which were supplied by the geothermal wells in order to produce cooling at temperatures as low as −16 °C, achieving coefficients of performance between 0.10 and 0.36, while the exergy efficiency varied from 0.15 to 0.40 depending on the system operating temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9061220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9061220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jonathan Ibarra-Bahena; Ulises Dehesa-Carrasco; Yuridiana Rocio Galindo-Luna; Iván Leonardo Medina-Caballero; +1 AuthorsJonathan Ibarra-Bahena; Ulises Dehesa-Carrasco; Yuridiana Rocio Galindo-Luna; Iván Leonardo Medina-Caballero; Wilfrido Rivera;For absorption cooling cycles using water as a refrigerant, H2O/LiCl mixtures are suitable for replacing conventional H2O/LiBr mixtures. In addition, membrane devices can be used to develop compact and lighter absorption systems, and they can operate with H2O/LiCl mixtures. The present paper describes an experimental evaluation of a membrane desorber/condenser operating at atmospheric pressure. Two operation modes were analyzed: continuous cycle operation and intermittent operation. For the first operation mode, the maximum desorption rate was 3.49 kg/h·m2, with a solution temperature of 90.3 °C and a condensation temperature of 25.1 °C. The lowest desorption rate value was 0.26 kg/h·m2, with a solution temperature of 75.4 °C and a condensation temperature of 40.1 °C. In the second mode, after three operating hours, the refrigerant fluid produced, per 1 m2 of membrane area, 7.7, 5.6, 4.3, and 2.2 kg, at solution temperatures of 90.3, 85.3, 80.4, and 75.4 °C, respectively. A one-dimension heat and mass transfer model is presented. The calculated values of desorption rate and outlet temperatures were compared with the experimental data; a square correlation coefficient of 0.9929 was reached for the desorption rate; meanwhile, for the outlet solution temperatures and the outlet cooling-water temperatures, a square correlation coefficient up to 0.9991 was achieved. The membrane desorber has the advantages of operating at atmospheric-pressure conditions, high condensation temperature, the ability to use different saline solution working mixtures, and different operation methods. These advantages can lead to new absorption systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes12121184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes12121184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV J. Ibarra-Bahena; U. Dehesa-Carrasco; B. Rivas-Herrera; Rosenberg J. Romero; Wilfrido Rivera;Abstract Conventional desorbers in absorption systems are in general bulky and heavy; hence they are not usually used in compact systems. In addition, depending on the working mixture, they operate in a vacuum or at high pressures, which is in both cases a great disadvantage. In this study, a desorber/condenser was tested and modelled, using the Air Gap Membrane Distillation (AGMD) process, operating at atmospheric pressure conditions, with water/lithium bromide mixture for absorption system applications. The desorber/condenser used a membrane with a 0.45 μm pore size. Thirty-six experimental test runs were carried out at different operating conditions. A one-dimensional heat and mass transfer model was developed in order to describe the vapour water desorption from an aqueous LiBr mixture at atmospheric pressure conditions. The refrigerant desorption rate for the experimental conditions varied from 0.30 to 9.69 kg/m 2 h. The theoretical refrigerant desorption rate calculated by the heat and mass transfer model agreed with the experimental data within ±10%. The results showed that the highest mass transfer resistance was at the boundary layer (1/K bl ) which increases with the increment of X LiBr and decreases with the increment of T LiBr .
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2017.05.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2017.05.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC E. Gómez-Arias; J. Ibarra-Bahena; Rosenberg J. Romero; A. Rodríguez-Martínez; M. Montiel-González; L. Velazquez-Avelar;The generator is the starter device of single stage heat transformer (SSHT) and its characteristics have main effects on the overall efficiency of this kind of absorption machines. This article reports a study of the generation of steam and changes in the concentration of the working solution (Water/Carrol mixture) into a plate heat exchanger as a function of its horizontal and vertical position by gravity effect. It is considered the analysis of six experimental tests; two were evaluated in a plate heat exchanger in a horizontal position and four in a vertical position (90 degree inclination). The generation of steam and increased concentration of the working solution are more sensitive to the vertical position of exchanger than in horizontal position. The results of numerical-experimental analysis indicates that a heat exchanger in horizontal position, the steam generation and the change in the concentration of the working solution occurring in the middle of the plate (or at greater distance depending to the thermodynamic conditions) and instantly in vertical position (at the input of the plate).
Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-014-0742-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-014-0742-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Eduardo Venegas-Reyes; U. Dehesa-Carrasco; M. Montiel-González; Rosenberg J. Romero; +1 AuthorsEduardo Venegas-Reyes; U. Dehesa-Carrasco; M. Montiel-González; Rosenberg J. Romero; J. Ibarra-Bahena;Abstract Parabolic Trough Collectors (PTC) provides thermal solar energy at medium temperature, and in order to increase the thermal level, the solar system can be coupled to upgrading devices, such as Absorption Heat Transformers (AHT). In this paper, a feasibility analysis of the PTC system operating as thermal source of an AHT is described. The PTC and AHT units were tested and, based on the experimental data of each system, a heat transfer analysis was carried out in order to propose a single system. Two case studies were analysed: In the first, the evaporator temperature was close to the generator temperature (84.6 and 85.2 °C respectively) and a simultaneous flow from the heat source was used; in the second case, the evaporator temperature was lower than the generator temperature (79.6 and 86.7 °C respectively) and a serial flow from the heat source was proposed. Results show that, for the absorber temperature of 101 °C, the calculated generator and evaporator heat loads were 1.50 and 1.34 kW respectively in Case 1, and 0.86 kW for both components in Case 2. For Case 1, the PTC system required 6.0 m 2 in order to provide two mass flows of 6.00 × 10 −02 and 5.35 × 10 −02 kg/s for generator and evaporator at 89 °C. For Case 2, one mass flow of 6.60 × 10 −02 kg/s at 89 °C for generator and evaporator must be satisfied by a 3.7 m 2 PTC system.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.05.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.05.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: J. Ibarra-Bahena; C.V. Valdez-Morales; Rosenberg J. Romero;Abstract This paper proposes an accurate estimation for the experimental thermodynamic performance of a Single Stage Absorption Heat Transformer (SSHT). The calculation includes five heat and mass transfer effectiveness factors of the components in the SSHT. The evaporator, condenser and heat exchanger effectiveness is based on the method of Number of transfer units (NTU). Absorber and generator effectiveness are correlated with mass transfer, concentrations of the working mixture, and external powers, respectively. Calculations according to the operating conditions of the experimental tests were carried out in a 4 kW absorption heat transformer. The experiment was performed with the water/Carrol mixture with concentrations from 66 to 69%w; the actual Coefficient of Performance (COP a ) values were from 0.28 to 0.35, while the classical model overestimates these values from 0.47 to 0.49, respectively. The predicted COPη with these effectiveness factors is much more accurate (error factor lower than 92.25%) with COP a .
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2017.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2017.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Esmeralda Cervantes-Rendón; Jonathan Ibarra-Bahena; Luis E. Cervera-Gómez; Rosenberg J. Romero; +3 AuthorsEsmeralda Cervantes-Rendón; Jonathan Ibarra-Bahena; Luis E. Cervera-Gómez; Rosenberg J. Romero; Jesús Cerezo; Antonio Rodríguez-Martínez; Ulises Dehesa-Carrasco;doi: 10.3390/su141710958
A reverse osmosis system driven by photovoltaic energy is an eco-friendly and sustainable way to produce freshwater in rural areas without connection to a power grid and with available brackish water sources. This paper describes a project where a photovoltaic-driven low-pressure reverse osmosis system (LPRO-PV) was designed, tested under laboratory conditions, and installed in Samalayuca, Chihuahua, Mexico, to evaluate the technical feasibility and social impact of this technology. The LPRO-PV system was tested with synthetic water with a salinity of 2921 ± 62.3 mg/L; the maximum freshwater volume produced was 1.8 ± 0.06 m3/day with a salinity value of 91 ± 1.9 mg/L. The LPRO-PV system satisfied the basic freshwater requirements for a local family of three members for one year, including the mobility-restriction period due to the COVID-19 pandemic. The social evaluation analysis reflects the importance of considering the technical aspects derived from the experimental tests, as well as the users’ perception of the performance and operation of the system. As a result of the implementation of this technology and the benefits described by the users, they committed to the maintenance activities required for the LPRO-PV system’s operation. This technology has great potential to produce fresh water in arid and isolated regions with high-salinity groundwater sources, thus fulfilling the human right to safe and clean drinking water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141710958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141710958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu