- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Denmark, United Kingdom, ItalyPublisher:Wiley Funded by:EC | IMBALANCE-PEC| IMBALANCE-PMiquel Ferrín; Laura Márquez; Henning Petersen; Sandrine Salmon; Jean‐François Ponge; Miquel Arnedo; Bridget Emmett; Claus Beier; Inger K. Schmidt; Albert Tietema; Paolo de Angelis; Dario Liberati; Edit Kovács‐Láng; György Kröel‐Dulay; Marc Estiarte; Mireia Bartrons; Josep Peñuelas; Guille Peguero;handle: 2067/47442
AbstractThe capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short‐term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long‐term macroecological drivers with local climate manipulations.We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco‐morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community‐level responses.Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short‐term experimental drought with traits related to more euedaphic life‐forms.The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher dispersal capacity that allows them to seek more favourable micro‐habitats after experiencing drier conditions. The observed relative edaphization of the springtail communities after short‐term experimental drought may thus be a transient community response.The disparity between macroecological trends and fast community‐level responses after climate manipulations highlights the need of simultaneously assessing long‐term and short‐term drivers at broad spatial scales to adequately interpret trait–environment relationships and better forecast biodiversity responses to climate change.Read the freePlain Language Summaryfor this article on the Journal blog.
NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 Denmark, United Kingdom, Netherlands, SpainPublisher:Elsevier BV Beier, C.; Emmett, B. A.; Penuelas, J.; Schmidt, I. K.; Tietema, A.; Estiarte, M.; Gunderson, P.; Llorens, L.; Riis-Nielsen, T.; Sowerby, A.; Gorissen, A.;The global climate is predicted to become significantly warmer over the next century. This will affect ecosystem processes and the functioning of semi natural and natural ecosystems in many parts of the world. However, as various ecosystem processes may be affected to a different extent, balances between different ecosystem processes as well as between different ecosystems may shift and lead to major unpredicted changes. In this study four European shrubland ecosystems along a north-south temperature gradient were experimentally warmed by a novel nighttime warming technique. Biogeochemical cycling of both carbon and nitrogen was affected at the colder sites with increased carbon uptake for plant growth as well as increased carbon loss through soil respiration. Carbon uptake by plant growth was more sensitive to warming than expected from the temperature response across the sites while carbon loss through soil respiration reacted to warming in agreement with the overall Q10 and response functions to temperature across the sites. Opposite to carbon, the nitrogen mineralization was relatively insensitive to the temperature increase and was mainly affected by changes in soil moisture. The results suggest that C and N cycles respond asymmetrically to warming, which may lead to progressive nitrogen limitation and thereby acclimation in plant production. This further suggests that in many temperate zones nitrogen deposition has to be accounted for, not only with respect to the impact on water quality through increased nitrogen leaching where N deposition is high, but also in predictions of carbon sequestration in terrestrial ecosystems under future climatic conditions. Finally the results indicate that on the short term the above-ground processes are more sensitive to temperature changes than the below ground processes.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2008Data sources: Universiteit van Amsterdam Digital Academic RepositoryNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2008.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 118 citations 118 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 44visibility views 44 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2008Data sources: Universiteit van Amsterdam Digital Academic RepositoryNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2008.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United Kingdom, ItalyPublisher:Wiley David B. Roy; Chris D. Evans; Mark O. Hill; Jeanette Whitaker; Lorenzo Marini; Andrew Crowe; Simon M. Smart; Edwin C. Rowe; Mike G. Le Duc; W. Andrew Scott; Bridget A. Emmett; C. Nigel Critchley; Rob H. Marrs;handle: 11577/2491651
Question: Can useful realised niche models be constructed for British plant species using climate, canopy height and mean Ellenberg indices as explanatory variables? Location: Great Britain. Methods: Generalised linear models were constructed using occurrence data covering all major natural and semi-natural vegetation types (n=40 683 quadrat samples). Paired species and soil records were only available for 4% of the training data (n=1033) so modelling was carried out in two stages. First, multiple regression was used to express mean Ellenberg values for moisture, pH and fertility, in terms of direct soil measurements. Next, species presence/absence was modelled using mean indicator scores, cover-weighted canopy height, three climate variables and interactions between these factors, but correcting for the presence of each target species in training plots to avoid circularity. Results: Eight hundred and three higher plants and 327 bryophytes were modelled. Thirteen per cent of the niche models for higher plants were tested against an independent survey dataset not used to build the models. Models performed better when predictions were based only on indices derived from the species composition of each plot rather than measured soil variables. This reflects the high variation in vegetation indices that was not explained by the measured soil variables. Conclusions: The models should be used to estimate expected habitat suitability rather than to predict species presence. Least uncertainty also attaches to their use as risk assessment and monitoring tools on nature reserves because they can be solved using mean environmental indicators calculated from the existing species composition, with or without climate data.
Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1654-1103.2010.01173.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1654-1103.2010.01173.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Belgium, SwitzerlandPublisher:Wiley Funded by:SNSF | Germination and early see...SNSF| Germination and early seedling growth of Pinus and Quercus at the forest-steppe ecotone: effects of environmental stress and facilitationBeier, Claus; Beierkuhnlein, Carl; Wohlgemuth, Thomas; Penuelas, Josep; Emmett, Bridget; Körner, Christian; de Boeck, Hans; Christensen, Jens Hesselbjerg; Leuzinger, Sebastian; Janssens, Ivan A.; Hansen, Karin;AbstractClimatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2012.01793.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 437 citations 437 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2012.01793.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:EC | SOILTRECEC| SOILTRECRobinson, D.A.; Hockley, N.; Cooper, D.M.; Emmett, B.A.; Keith, A.M.; Lebron, I.; Reynolds, B.; Tipping, E.; Tye, A.M.; Watts, C.W.; Whalley, W.R.; Black, H.I.J.; Warren, G.P.; Robinson, J.S.;Natural capital and ecosystem service concepts are embodied in the ecosystems approach to sustainable development, which is a framework being consistently adopted by decision making bodies ranging from national governments to the United Nations. In the Millennium Ecosystem Assessment soils are given the vital role of a supporting service, but many of the other soil goods and services remain obscured. In this review we address this using and earth-system approach, highlighting the final goods and services soils produce, in a stock-fund, fund-service model of the pedosphere. We also argue that focusing on final goods and services will be counterproductive in the long run and emphasize that final goods and services are derived from an ecosystem supply chain that relies on ecological infrastructure. We propose that an appropriate ecosystems framework for soils should incorporate soil stocks (natural capital) showing their contribution to stock-flows and emergent fund-services as part of the supply chain. By so doing, an operational ecosystems concept for soils can draw on much more supporting data on soil stocks as demonstrated in a case study with soils data from England and Wales showing stocks, gaps in monitoring and drivers of change. Although the focus of this review is on soils, we believe the earth-system approach and principles of the ecosystem supply chain are widely applicable to the ecosystems approach and bring clarity in terms of where goods and services are derived from.
NERC Open Research A... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 143 citations 143 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:FCT | LA 1, UKRI | UK Status, Change and Pro...FCT| LA 1 ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Authors: Thomas, A.; Cosby, B.J.; Henrys, P.; Emmett, B.;pmid: 32371212
The UK Countryside Survey (CS) is a national long-term survey of soils and vegetation that spans three decades (1978-2007). Past studies using CS data have identified clear contrasting trends in topsoil organic carbon (tSOC) concentrations (0-15 cm) related to differences between habitat types. Here we firstly examine changes in tSOC resulting from land use change, and secondly construct mixed models to describe the impact of indirect drivers where land use has been constant. Where it occurs, land use change is a strong driver of SOC change, with largest changes in tSOC for transitions involving SOC-rich soils in upland and bog systems. Afforestation did not always increase tSOC, and the effect of transitions involving woodland was dependent on the other vegetation type. The overall national spatial pattern of tSOC concentration where land use has been constant is most strongly related to vegetation type and topsoil pH, with contributions from climate variables, deposition and geology. Comparisons of models for tSOC across time periods suggest that declining SO4 deposition has allowed recovery of topsoils from acidification, but that this has not resulted in the increased decomposition rates and loss of tSOC which might be expected. As a result, the relationship between pH and tSOC in UK topsoils has changed significantly between 1978 and 2007. The contributions of other indirect drivers in the models suggest negative relationships to seasonal temperature metrics and positive relationships to seasonal precipitation at the dry end of the scale. The results suggest that the CS approach of long-term collection of co-located vegetation and soil biophysical data provides essential tools both for identifying trends in tSOC at national and habitat levels, and for identifying areas of risk or areas with opportunities for managing topsoil SOC and vegetation change.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, Spain, Denmark, United States, United States, United States, United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:EC | INCREASE, EC | IMBALANCE-P, EC | TRAITEC| INCREASE ,EC| IMBALANCE-P ,EC| TRAITAuthors: Andrew J. Burton; Inger Kappel Schmidt; Amanda N. Henderson; Edward B. Rastetter; +40 AuthorsAndrew J. Burton; Inger Kappel Schmidt; Amanda N. Henderson; Edward B. Rastetter; Lorien L. Reynolds; Jerry M. Melillo; Brian J. Enquist; Xin Wang; Thomas W. Crowther; Jianwu Tang; Jeffrey S. Dukes; Aaron L. Strong; Serita D. Frey; Christian Poll; Laurel Pfeifer-Meister; Mary A. Heskel; Pamela H. Templer; Sven Marhan; Albert Tietema; Giovanbattista de Dato; William C. Eddy; Yiqi Luo; Joanna C. Carey; Megan B. Machmuller; Steven D. Allison; Andrew B. Reinmann; Lifen Jiang; Chris Bamminger; Josep Peñuelas; Peter B. Reich; Peter B. Reich; Bart R. Johnson; Sabine Reinsch; John Harte; Kevin D. Kroeger; Scott D. Bridgham; Scott L. Collins; Vidya Suseela; Jacqueline E. Mohan; Anne Marie Panetta; Marc Estiarte; Bridget A. Emmett; Gaius R. Shaver; Klaus Steenberg Larsen;pmid: 27849609
pmc: PMC5137763
Significance One of the greatest challenges in projecting future shifts in the global climate is understanding how soil respiration rates will change with warming. Multiple experimental warming studies have explored this response, but no consensus has been reached. Based on a global synthesis of 27 experimental warming studies spanning nine biomes, we find that although warming increases soil respiration rates, there is limited evidence for a shifting respiration response with experimental warming. We also note a universal decline in the temperature sensitivity of respiration at soil temperatures >25 °C. Together, our data indicate that future respiration rates are likely to follow the current temperature response function, but higher latitudes will be more responsive to warmer temperatures.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4b62m6tmData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016Data sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2016Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1605365113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 359 citations 359 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4b62m6tmData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016Data sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2016Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1605365113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Informa UK Limited Henrys, P.A.; Smart, S.M.; Rowe, E.C.; Jarvis, S.G.; Fang, Z.; Evans, C.D.; Emmett, B.A.; Butler, A.;AbstractSite-occupancy models that predict habitat suitability for plant species in relation to measurable environmental factors can be useful for conservation planning. Such models can be derived from large-scale presence–absence datasets on the basis of environmental observations or, where only floristic data are available, using plant trait values averaged across a plot. However, the estimated modelled relationship between species presence and environmental variables depends on the type of statistical model adopted and hence can introduce additional uncertainty. Authors used an ensemble-modelling approach to constrain and quantify the uncertainty because of the choice of statistical model, applying generalised linear models (GLM), generalised additive models (GAM), and multivariate adaptive regression splines (MARS). Niche models were derived for over 1000 species of vascular plants, bryophytes and lichens, representing a large proportion of the British flora and many species occurring in continental E...
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1179/2042349715y.0000000010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1179/2042349715y.0000000010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Funded by:EC | AI4SoilHealth, RCN | Quantifying climate and l..., UKRI | AI4SoilHealth : Accelerat... +1 projectsEC| AI4SoilHealth ,RCN| Quantifying climate and land use effects on continental-scale coupling of water and carbon cycles ,UKRI| AI4SoilHealth : Accelerating collection and use of soil health information using AI technology to support the Soil Deal for Europe and EU Soil Observatory ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Thomas, A.; Seaton, F.; Dhiedt, E.; Cosby, B.J.; Feeney, C.; Lebron, I.; Maskell, L.; Wood, C.; Reinsch, S.; Emmett, B.A.; Robinson, D.A.;pmid: 38387558
Soil porosity and its reciprocal bulk density are important environmental state variables that enable modelers to represent hydraulic function and carbon storage. Biotic effects and their 'dynamic' influence on such state variables remain largely unknown for larger scales and may result in important, yet poorly quantified environmental feedbacks. Existing representation of hydraulic function is often invariant to environmental change and may be poor in some systems, particularly non-arable soils. Here we assess predictors of total porosity across two comprehensive national topsoil (0-15 cm) data sets, covering the full range of soil organic matter (SOM) and habitats (n = 1385 & n = 2570), using generalized additive mixed models and machine learning. Novel aspects of this work include the testing of metrics on aggregate size and livestock density alongside a range of different particle size distribution metrics. We demonstrate that porosity trends in Great Britain are dominated by biotic metrics, soil carbon and land use. Incorporating these variables into porosity prediction improves performance, paving the way for new dynamic calculation of porosity using surrogate measures with remote sensing, which may help improve prediction in data sparse regions of the world. Moreover, dynamic calculation of porosity could support representation of feedbacks in environmental and Earth System Models. Representing the hydrological feedbacks from changes in structural porosity also requires data and models at appropriate spatial scales to capture conditions leading to near-saturated soil conditions. Classification. Environmental Sciences.
NERC Open Research A... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.171158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.171158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, United KingdomPublisher:Elsevier BV Eva Holthof; María Teresa Domínguez; María Teresa Domínguez; Eva Koller; Bridget A. Emmett; Andrew R. Smith;handle: 10261/142710
5 páginas.-- 2 figuras.-- 2 tablas.-- 39 referencias Evaluating the response of soil organic matter decomposition to warming and changes in rainfall is critical to assess the likelihood of proposed positive feedbacks from the terrestrial to the atmospheric system. The response of soil respiration and extracellular activities (EEAs) to long-term warming and recurrent summer drought was studied in a wet shrubland ecosystem in Wales (UK), after 13 years of climate change simulation in a whole-ecosystem experiment. Over a year soil respiration, temperature and moisture was monitored in the field. During the summer season, coinciding with maximum soil respiration rates, soil inorganic N and P, microbial biomass and the extracellular activities (EEAs) of a selection of enzymes involved in C, N and P cycling were analysed. Based on previous field measurements of C and N mineralization, we expected a stronger response of C-cycling EEAs, in comparison to N-cycling EEAs, to drought and warming, and a greater sensitivity of C-cycling EEAs to drought than to warming. Drought had a clear impact on soil respiration during the summer season. However, the availability of inorganic N or P was not significantly affected by the treatments. Microbial biomass and C:N ratio also remained unchanged. In contrast to one of our hypothesis, C-cycling EEAs measured under non-optimal conditions that simulated soil environment in the field (pH of 4.1 and with a temperature incubation of 10 °C) showed no significant differences due to long-term warming and recurring drought treatments. Possibly, this assay approach may have obscured treatment effects on the soil enzyme pool. Our results highlight the need for developing methods for the in-situ analysis of EEAs to determine rates of reactions. This research was funded by the EU project FP7-INFRASTRUCTURE-2008-1 (Grant Agreement no. 227628) − the INCREASE project. M.T.D was supported by two postdoctoral fellowships awarded by the Spanish Government (National Science and Technology Foundation and Juan de la Cierva fellowship). Peer reviewed
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apsoil.2016.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 75 Powered bymore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apsoil.2016.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Denmark, United Kingdom, ItalyPublisher:Wiley Funded by:EC | IMBALANCE-PEC| IMBALANCE-PMiquel Ferrín; Laura Márquez; Henning Petersen; Sandrine Salmon; Jean‐François Ponge; Miquel Arnedo; Bridget Emmett; Claus Beier; Inger K. Schmidt; Albert Tietema; Paolo de Angelis; Dario Liberati; Edit Kovács‐Láng; György Kröel‐Dulay; Marc Estiarte; Mireia Bartrons; Josep Peñuelas; Guille Peguero;handle: 2067/47442
AbstractThe capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short‐term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long‐term macroecological drivers with local climate manipulations.We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco‐morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community‐level responses.Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short‐term experimental drought with traits related to more euedaphic life‐forms.The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher dispersal capacity that allows them to seek more favourable micro‐habitats after experiencing drier conditions. The observed relative edaphization of the springtail communities after short‐term experimental drought may thus be a transient community response.The disparity between macroecological trends and fast community‐level responses after climate manipulations highlights the need of simultaneously assessing long‐term and short‐term drivers at broad spatial scales to adequately interpret trait–environment relationships and better forecast biodiversity responses to climate change.Read the freePlain Language Summaryfor this article on the Journal blog.
NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 Denmark, United Kingdom, Netherlands, SpainPublisher:Elsevier BV Beier, C.; Emmett, B. A.; Penuelas, J.; Schmidt, I. K.; Tietema, A.; Estiarte, M.; Gunderson, P.; Llorens, L.; Riis-Nielsen, T.; Sowerby, A.; Gorissen, A.;The global climate is predicted to become significantly warmer over the next century. This will affect ecosystem processes and the functioning of semi natural and natural ecosystems in many parts of the world. However, as various ecosystem processes may be affected to a different extent, balances between different ecosystem processes as well as between different ecosystems may shift and lead to major unpredicted changes. In this study four European shrubland ecosystems along a north-south temperature gradient were experimentally warmed by a novel nighttime warming technique. Biogeochemical cycling of both carbon and nitrogen was affected at the colder sites with increased carbon uptake for plant growth as well as increased carbon loss through soil respiration. Carbon uptake by plant growth was more sensitive to warming than expected from the temperature response across the sites while carbon loss through soil respiration reacted to warming in agreement with the overall Q10 and response functions to temperature across the sites. Opposite to carbon, the nitrogen mineralization was relatively insensitive to the temperature increase and was mainly affected by changes in soil moisture. The results suggest that C and N cycles respond asymmetrically to warming, which may lead to progressive nitrogen limitation and thereby acclimation in plant production. This further suggests that in many temperate zones nitrogen deposition has to be accounted for, not only with respect to the impact on water quality through increased nitrogen leaching where N deposition is high, but also in predictions of carbon sequestration in terrestrial ecosystems under future climatic conditions. Finally the results indicate that on the short term the above-ground processes are more sensitive to temperature changes than the below ground processes.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2008Data sources: Universiteit van Amsterdam Digital Academic RepositoryNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2008.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 118 citations 118 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 44visibility views 44 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2008Data sources: Universiteit van Amsterdam Digital Academic RepositoryNatural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2008.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United Kingdom, ItalyPublisher:Wiley David B. Roy; Chris D. Evans; Mark O. Hill; Jeanette Whitaker; Lorenzo Marini; Andrew Crowe; Simon M. Smart; Edwin C. Rowe; Mike G. Le Duc; W. Andrew Scott; Bridget A. Emmett; C. Nigel Critchley; Rob H. Marrs;handle: 11577/2491651
Question: Can useful realised niche models be constructed for British plant species using climate, canopy height and mean Ellenberg indices as explanatory variables? Location: Great Britain. Methods: Generalised linear models were constructed using occurrence data covering all major natural and semi-natural vegetation types (n=40 683 quadrat samples). Paired species and soil records were only available for 4% of the training data (n=1033) so modelling was carried out in two stages. First, multiple regression was used to express mean Ellenberg values for moisture, pH and fertility, in terms of direct soil measurements. Next, species presence/absence was modelled using mean indicator scores, cover-weighted canopy height, three climate variables and interactions between these factors, but correcting for the presence of each target species in training plots to avoid circularity. Results: Eight hundred and three higher plants and 327 bryophytes were modelled. Thirteen per cent of the niche models for higher plants were tested against an independent survey dataset not used to build the models. Models performed better when predictions were based only on indices derived from the species composition of each plot rather than measured soil variables. This reflects the high variation in vegetation indices that was not explained by the measured soil variables. Conclusions: The models should be used to estimate expected habitat suitability rather than to predict species presence. Least uncertainty also attaches to their use as risk assessment and monitoring tools on nature reserves because they can be solved using mean environmental indicators calculated from the existing species composition, with or without climate data.
Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1654-1103.2010.01173.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1654-1103.2010.01173.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Belgium, SwitzerlandPublisher:Wiley Funded by:SNSF | Germination and early see...SNSF| Germination and early seedling growth of Pinus and Quercus at the forest-steppe ecotone: effects of environmental stress and facilitationBeier, Claus; Beierkuhnlein, Carl; Wohlgemuth, Thomas; Penuelas, Josep; Emmett, Bridget; Körner, Christian; de Boeck, Hans; Christensen, Jens Hesselbjerg; Leuzinger, Sebastian; Janssens, Ivan A.; Hansen, Karin;AbstractClimatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2012.01793.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 437 citations 437 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2012.01793.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:EC | SOILTRECEC| SOILTRECRobinson, D.A.; Hockley, N.; Cooper, D.M.; Emmett, B.A.; Keith, A.M.; Lebron, I.; Reynolds, B.; Tipping, E.; Tye, A.M.; Watts, C.W.; Whalley, W.R.; Black, H.I.J.; Warren, G.P.; Robinson, J.S.;Natural capital and ecosystem service concepts are embodied in the ecosystems approach to sustainable development, which is a framework being consistently adopted by decision making bodies ranging from national governments to the United Nations. In the Millennium Ecosystem Assessment soils are given the vital role of a supporting service, but many of the other soil goods and services remain obscured. In this review we address this using and earth-system approach, highlighting the final goods and services soils produce, in a stock-fund, fund-service model of the pedosphere. We also argue that focusing on final goods and services will be counterproductive in the long run and emphasize that final goods and services are derived from an ecosystem supply chain that relies on ecological infrastructure. We propose that an appropriate ecosystems framework for soils should incorporate soil stocks (natural capital) showing their contribution to stock-flows and emergent fund-services as part of the supply chain. By so doing, an operational ecosystems concept for soils can draw on much more supporting data on soil stocks as demonstrated in a case study with soils data from England and Wales showing stocks, gaps in monitoring and drivers of change. Although the focus of this review is on soils, we believe the earth-system approach and principles of the ecosystem supply chain are widely applicable to the ecosystems approach and bring clarity in terms of where goods and services are derived from.
NERC Open Research A... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 143 citations 143 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:FCT | LA 1, UKRI | UK Status, Change and Pro...FCT| LA 1 ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Authors: Thomas, A.; Cosby, B.J.; Henrys, P.; Emmett, B.;pmid: 32371212
The UK Countryside Survey (CS) is a national long-term survey of soils and vegetation that spans three decades (1978-2007). Past studies using CS data have identified clear contrasting trends in topsoil organic carbon (tSOC) concentrations (0-15 cm) related to differences between habitat types. Here we firstly examine changes in tSOC resulting from land use change, and secondly construct mixed models to describe the impact of indirect drivers where land use has been constant. Where it occurs, land use change is a strong driver of SOC change, with largest changes in tSOC for transitions involving SOC-rich soils in upland and bog systems. Afforestation did not always increase tSOC, and the effect of transitions involving woodland was dependent on the other vegetation type. The overall national spatial pattern of tSOC concentration where land use has been constant is most strongly related to vegetation type and topsoil pH, with contributions from climate variables, deposition and geology. Comparisons of models for tSOC across time periods suggest that declining SO4 deposition has allowed recovery of topsoils from acidification, but that this has not resulted in the increased decomposition rates and loss of tSOC which might be expected. As a result, the relationship between pH and tSOC in UK topsoils has changed significantly between 1978 and 2007. The contributions of other indirect drivers in the models suggest negative relationships to seasonal temperature metrics and positive relationships to seasonal precipitation at the dry end of the scale. The results suggest that the CS approach of long-term collection of co-located vegetation and soil biophysical data provides essential tools both for identifying trends in tSOC at national and habitat levels, and for identifying areas of risk or areas with opportunities for managing topsoil SOC and vegetation change.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, Spain, Denmark, United States, United States, United States, United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:EC | INCREASE, EC | IMBALANCE-P, EC | TRAITEC| INCREASE ,EC| IMBALANCE-P ,EC| TRAITAuthors: Andrew J. Burton; Inger Kappel Schmidt; Amanda N. Henderson; Edward B. Rastetter; +40 AuthorsAndrew J. Burton; Inger Kappel Schmidt; Amanda N. Henderson; Edward B. Rastetter; Lorien L. Reynolds; Jerry M. Melillo; Brian J. Enquist; Xin Wang; Thomas W. Crowther; Jianwu Tang; Jeffrey S. Dukes; Aaron L. Strong; Serita D. Frey; Christian Poll; Laurel Pfeifer-Meister; Mary A. Heskel; Pamela H. Templer; Sven Marhan; Albert Tietema; Giovanbattista de Dato; William C. Eddy; Yiqi Luo; Joanna C. Carey; Megan B. Machmuller; Steven D. Allison; Andrew B. Reinmann; Lifen Jiang; Chris Bamminger; Josep Peñuelas; Peter B. Reich; Peter B. Reich; Bart R. Johnson; Sabine Reinsch; John Harte; Kevin D. Kroeger; Scott D. Bridgham; Scott L. Collins; Vidya Suseela; Jacqueline E. Mohan; Anne Marie Panetta; Marc Estiarte; Bridget A. Emmett; Gaius R. Shaver; Klaus Steenberg Larsen;pmid: 27849609
pmc: PMC5137763
Significance One of the greatest challenges in projecting future shifts in the global climate is understanding how soil respiration rates will change with warming. Multiple experimental warming studies have explored this response, but no consensus has been reached. Based on a global synthesis of 27 experimental warming studies spanning nine biomes, we find that although warming increases soil respiration rates, there is limited evidence for a shifting respiration response with experimental warming. We also note a universal decline in the temperature sensitivity of respiration at soil temperatures >25 °C. Together, our data indicate that future respiration rates are likely to follow the current temperature response function, but higher latitudes will be more responsive to warmer temperatures.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4b62m6tmData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016Data sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2016Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1605365113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 359 citations 359 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4b62m6tmData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016Data sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2016Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1605365113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Informa UK Limited Henrys, P.A.; Smart, S.M.; Rowe, E.C.; Jarvis, S.G.; Fang, Z.; Evans, C.D.; Emmett, B.A.; Butler, A.;AbstractSite-occupancy models that predict habitat suitability for plant species in relation to measurable environmental factors can be useful for conservation planning. Such models can be derived from large-scale presence–absence datasets on the basis of environmental observations or, where only floristic data are available, using plant trait values averaged across a plot. However, the estimated modelled relationship between species presence and environmental variables depends on the type of statistical model adopted and hence can introduce additional uncertainty. Authors used an ensemble-modelling approach to constrain and quantify the uncertainty because of the choice of statistical model, applying generalised linear models (GLM), generalised additive models (GAM), and multivariate adaptive regression splines (MARS). Niche models were derived for over 1000 species of vascular plants, bryophytes and lichens, representing a large proportion of the British flora and many species occurring in continental E...
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1179/2042349715y.0000000010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1179/2042349715y.0000000010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Funded by:EC | AI4SoilHealth, RCN | Quantifying climate and l..., UKRI | AI4SoilHealth : Accelerat... +1 projectsEC| AI4SoilHealth ,RCN| Quantifying climate and land use effects on continental-scale coupling of water and carbon cycles ,UKRI| AI4SoilHealth : Accelerating collection and use of soil health information using AI technology to support the Soil Deal for Europe and EU Soil Observatory ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Thomas, A.; Seaton, F.; Dhiedt, E.; Cosby, B.J.; Feeney, C.; Lebron, I.; Maskell, L.; Wood, C.; Reinsch, S.; Emmett, B.A.; Robinson, D.A.;pmid: 38387558
Soil porosity and its reciprocal bulk density are important environmental state variables that enable modelers to represent hydraulic function and carbon storage. Biotic effects and their 'dynamic' influence on such state variables remain largely unknown for larger scales and may result in important, yet poorly quantified environmental feedbacks. Existing representation of hydraulic function is often invariant to environmental change and may be poor in some systems, particularly non-arable soils. Here we assess predictors of total porosity across two comprehensive national topsoil (0-15 cm) data sets, covering the full range of soil organic matter (SOM) and habitats (n = 1385 & n = 2570), using generalized additive mixed models and machine learning. Novel aspects of this work include the testing of metrics on aggregate size and livestock density alongside a range of different particle size distribution metrics. We demonstrate that porosity trends in Great Britain are dominated by biotic metrics, soil carbon and land use. Incorporating these variables into porosity prediction improves performance, paving the way for new dynamic calculation of porosity using surrogate measures with remote sensing, which may help improve prediction in data sparse regions of the world. Moreover, dynamic calculation of porosity could support representation of feedbacks in environmental and Earth System Models. Representing the hydrological feedbacks from changes in structural porosity also requires data and models at appropriate spatial scales to capture conditions leading to near-saturated soil conditions. Classification. Environmental Sciences.
NERC Open Research A... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.171158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.171158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, United KingdomPublisher:Elsevier BV Eva Holthof; María Teresa Domínguez; María Teresa Domínguez; Eva Koller; Bridget A. Emmett; Andrew R. Smith;handle: 10261/142710
5 páginas.-- 2 figuras.-- 2 tablas.-- 39 referencias Evaluating the response of soil organic matter decomposition to warming and changes in rainfall is critical to assess the likelihood of proposed positive feedbacks from the terrestrial to the atmospheric system. The response of soil respiration and extracellular activities (EEAs) to long-term warming and recurrent summer drought was studied in a wet shrubland ecosystem in Wales (UK), after 13 years of climate change simulation in a whole-ecosystem experiment. Over a year soil respiration, temperature and moisture was monitored in the field. During the summer season, coinciding with maximum soil respiration rates, soil inorganic N and P, microbial biomass and the extracellular activities (EEAs) of a selection of enzymes involved in C, N and P cycling were analysed. Based on previous field measurements of C and N mineralization, we expected a stronger response of C-cycling EEAs, in comparison to N-cycling EEAs, to drought and warming, and a greater sensitivity of C-cycling EEAs to drought than to warming. Drought had a clear impact on soil respiration during the summer season. However, the availability of inorganic N or P was not significantly affected by the treatments. Microbial biomass and C:N ratio also remained unchanged. In contrast to one of our hypothesis, C-cycling EEAs measured under non-optimal conditions that simulated soil environment in the field (pH of 4.1 and with a temperature incubation of 10 °C) showed no significant differences due to long-term warming and recurring drought treatments. Possibly, this assay approach may have obscured treatment effects on the soil enzyme pool. Our results highlight the need for developing methods for the in-situ analysis of EEAs to determine rates of reactions. This research was funded by the EU project FP7-INFRASTRUCTURE-2008-1 (Grant Agreement no. 227628) − the INCREASE project. M.T.D was supported by two postdoctoral fellowships awarded by the Spanish Government (National Science and Technology Foundation and Juan de la Cierva fellowship). Peer reviewed
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apsoil.2016.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 75 Powered bymore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apsoil.2016.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu