
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Niche models for British plants and lichens obtained using an ensemble approach

AbstractSite-occupancy models that predict habitat suitability for plant species in relation to measurable environmental factors can be useful for conservation planning. Such models can be derived from large-scale presence–absence datasets on the basis of environmental observations or, where only floristic data are available, using plant trait values averaged across a plot. However, the estimated modelled relationship between species presence and environmental variables depends on the type of statistical model adopted and hence can introduce additional uncertainty. Authors used an ensemble-modelling approach to constrain and quantify the uncertainty because of the choice of statistical model, applying generalised linear models (GLM), generalised additive models (GAM), and multivariate adaptive regression splines (MARS). Niche models were derived for over 1000 species of vascular plants, bryophytes and lichens, representing a large proportion of the British flora and many species occurring in continental E...
- Natural Environment Research Council United Kingdom
580, R package, envelope, 333, Ecology and Environment, climate change, pollution, niche occupancy, biodiversity
580, R package, envelope, 333, Ecology and Environment, climate change, pollution, niche occupancy, biodiversity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
