- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Jorge Lara; Lesedi Masisi; Concepcion Hernandez; Marco A. Arjona; Ambrish Chandra;doi: 10.3390/en14092650
This paper presents a novel single-phase (SP) active-neutral point clamped (ANPC) five-level bidirectional converter (FLBC) for enhancing the power quality (PQ) during the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation of an electric vehicle (EV) charger connected in series. This EV charger is based on a dual-active half-bridge DC-DC converter (DAHBC) with a high frequency isolation transformer. Unlike the comparable ANPC topologies found in literature, the proposed one has two more switches, i.e., ten instead of eight. However, with the addition of these components, the proposed multilevel converter not only becomes capable of properly balancing the voltage of the DC-link split capacitors under various step-changing conditions but it achieves a better efficiency, a lower stress of the switching devices and a more even distribution of the power losses. The resulting grid-tied ANPC-SPFLBC and DAHBC are accurately controlled with a cascaded control strategy and a single-phase shift (SPS) control technique, respectively. The simulation results obtained with MATLAB-SimPowerSystems as well as the experimental results obtained in laboratory validate the proposed ANPC-SPFLBC for a set of exhaustive tests in both V2G and G2V modes. A detailed power quality analysis carried out with a Fluke 43B alike demonstrates the good performance of the proposed topology.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/9/2650/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/9/2650/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:UKRI | DER Centres – A National ...UKRI| DER Centres – A National Network of PEMD Centres of ExcellenceAuthors: Concepcion Hernandez; Jorge Lara; Marco A. Arjona; Enrique Melgoza-Vazquez;doi: 10.3390/en16052248
This paper presents a multi-objective design optimization of a power transformer to find the optimal geometry of its core and the low- and high-voltage windings, representing the minimum power losses and the minimum core and copper weights. The optimal design is important because it allows manufacturers to build more efficient and economical transformers. The approach employs a manufacturer’s design methodology, which is based on the usage of the laws of physics and leads to an analytical transformer model with the advantage of requiring a low amount of computing time. Afterward, the multi-objective design optimization is defined along with its constraints, and they are solved using the Non-Sorting Genetic Algorithm III (NSGA-III), which finds a set of optimal solutions. Once an optimal solution is selected from the Pareto front, it is necessary to fine-tune it with the 3D Finite Element Analysis (FEA). To avoid the large computing times needed to carry out the 3D Finite Element (FE) model simulations used in multi-objective design optimization, Response Surface Methodology (RSM) polynomial models are developed using 3D FE model transformer simulations. Finally, a second multi-objective design optimization is carried out using the developed RSM empirical models that represent the cost functions and is solved using the NSGA-III. The numerical results of the optimal core and windings geometries demonstrate the validity of the proposed design methodology based on the NSGA-III. The used global optimizer has the feature of solving optimization problems with many cost functions, but it has not been applied to the design of transformers. The results obtained in this paper demonstrate better performance and accuracy with respect to the commonly used NSGA-II.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2248/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2248/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Jorge Lara; Lesedi Masisi; Concepcion Hernandez; Marco A. Arjona; Ambrish Chandra;doi: 10.3390/en14092644
This paper presents a novel single-phase grid-tied neutral-point-clamped (NPC) five-level converter (SPFLC). Unlike the literature on five-level NPC topologies, the proposed one is capable of inherently balancing the voltage of the DC-link split capacitors. For this purpose, a simple Multicarrier Phase Disposition (MPD) Pulse Width Modulation (PWM) technique is used, thus avoiding both complex modifications to the Space Vector Modulation (SVM) and offset voltage injections into the carrier based (CB) PWM, as commonly done in most conventional balancing algorithms. Bearing in mind that the proposed balancing strategy only requires measuring the capacitors’ voltages and the sign of the converter output current, it has a very low complexity. The developed strategy is not only straightforwardly implemented but is also very effective for obtaining symmetrical and undistorted voltage levels from the proposed multilevel converter, as well as for significantly improving the power quality of the SPFLC output voltage and, in turn, of the grid current. The simulation results obtained with MATLAB-SimPowerSystems as well as the experimental results obtained with the prototype built in the laboratory validate the topology of the proposed NPC five-level converter and the voltage balancing strategy, by showing a good performance under step-changes and exhaustive operating test conditions.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/9/2644/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/9/2644/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Jorge Lara; Lesedi Masisi; Concepcion Hernandez; Marco A. Arjona; Ambrish Chandra;doi: 10.3390/en14092650
This paper presents a novel single-phase (SP) active-neutral point clamped (ANPC) five-level bidirectional converter (FLBC) for enhancing the power quality (PQ) during the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation of an electric vehicle (EV) charger connected in series. This EV charger is based on a dual-active half-bridge DC-DC converter (DAHBC) with a high frequency isolation transformer. Unlike the comparable ANPC topologies found in literature, the proposed one has two more switches, i.e., ten instead of eight. However, with the addition of these components, the proposed multilevel converter not only becomes capable of properly balancing the voltage of the DC-link split capacitors under various step-changing conditions but it achieves a better efficiency, a lower stress of the switching devices and a more even distribution of the power losses. The resulting grid-tied ANPC-SPFLBC and DAHBC are accurately controlled with a cascaded control strategy and a single-phase shift (SPS) control technique, respectively. The simulation results obtained with MATLAB-SimPowerSystems as well as the experimental results obtained in laboratory validate the proposed ANPC-SPFLBC for a set of exhaustive tests in both V2G and G2V modes. A detailed power quality analysis carried out with a Fluke 43B alike demonstrates the good performance of the proposed topology.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/9/2650/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/9/2650/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:UKRI | DER Centres – A National ...UKRI| DER Centres – A National Network of PEMD Centres of ExcellenceAuthors: Concepcion Hernandez; Jorge Lara; Marco A. Arjona; Enrique Melgoza-Vazquez;doi: 10.3390/en16052248
This paper presents a multi-objective design optimization of a power transformer to find the optimal geometry of its core and the low- and high-voltage windings, representing the minimum power losses and the minimum core and copper weights. The optimal design is important because it allows manufacturers to build more efficient and economical transformers. The approach employs a manufacturer’s design methodology, which is based on the usage of the laws of physics and leads to an analytical transformer model with the advantage of requiring a low amount of computing time. Afterward, the multi-objective design optimization is defined along with its constraints, and they are solved using the Non-Sorting Genetic Algorithm III (NSGA-III), which finds a set of optimal solutions. Once an optimal solution is selected from the Pareto front, it is necessary to fine-tune it with the 3D Finite Element Analysis (FEA). To avoid the large computing times needed to carry out the 3D Finite Element (FE) model simulations used in multi-objective design optimization, Response Surface Methodology (RSM) polynomial models are developed using 3D FE model transformer simulations. Finally, a second multi-objective design optimization is carried out using the developed RSM empirical models that represent the cost functions and is solved using the NSGA-III. The numerical results of the optimal core and windings geometries demonstrate the validity of the proposed design methodology based on the NSGA-III. The used global optimizer has the feature of solving optimization problems with many cost functions, but it has not been applied to the design of transformers. The results obtained in this paper demonstrate better performance and accuracy with respect to the commonly used NSGA-II.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2248/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2248/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Jorge Lara; Lesedi Masisi; Concepcion Hernandez; Marco A. Arjona; Ambrish Chandra;doi: 10.3390/en14092644
This paper presents a novel single-phase grid-tied neutral-point-clamped (NPC) five-level converter (SPFLC). Unlike the literature on five-level NPC topologies, the proposed one is capable of inherently balancing the voltage of the DC-link split capacitors. For this purpose, a simple Multicarrier Phase Disposition (MPD) Pulse Width Modulation (PWM) technique is used, thus avoiding both complex modifications to the Space Vector Modulation (SVM) and offset voltage injections into the carrier based (CB) PWM, as commonly done in most conventional balancing algorithms. Bearing in mind that the proposed balancing strategy only requires measuring the capacitors’ voltages and the sign of the converter output current, it has a very low complexity. The developed strategy is not only straightforwardly implemented but is also very effective for obtaining symmetrical and undistorted voltage levels from the proposed multilevel converter, as well as for significantly improving the power quality of the SPFLC output voltage and, in turn, of the grid current. The simulation results obtained with MATLAB-SimPowerSystems as well as the experimental results obtained with the prototype built in the laboratory validate the topology of the proposed NPC five-level converter and the voltage balancing strategy, by showing a good performance under step-changes and exhaustive operating test conditions.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/9/2644/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/9/2644/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu