- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2010 Australia, United StatesPublisher:Elsevier BV Nicotra, Adrienne; Atkin, Owen; Bonser, S P; Davidson, Amy; Finnegan , E J; Mathesius, Ulrike; Poot, Pieter; Purruggana, M D; Richards, Christina; Valladares, Fernando; van Kleunen, Mark;Climate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants. Here, we provide a toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change. By bringing ecological, evolutionary, physiological and molecular perspectives together, we hope to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/28486Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2010.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 1,639 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/28486Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2010.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Spain, Switzerland, Germany, SwitzerlandPublisher:Wiley Funded by:EC | ECOGENESEC| ECOGENESMark van Kleunen; Mark van Kleunen; Markus Fischer; Wayne Dawson; Wayne Dawson; Rudolf P. Rohr; Rudolf P. Rohr;See also the Commentary by Davidson and Nicotra
New Phytologist arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAKonstanzer Online-Publikations-SystemArticle . 2012Data sources: Konstanzer Online-Publikations-SystemNew PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04104.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 38visibility views 38 download downloads 53 Powered bymore_vert New Phytologist arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAKonstanzer Online-Publikations-SystemArticle . 2012Data sources: Konstanzer Online-Publikations-SystemNew PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04104.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Switzerland, Germany, GermanyPublisher:Springer Science and Business Media LLC Funded by:SNSF | Growth limitations, pheno...SNSF| Growth limitations, phenotypic plasticity and micro-evolution in a long-lived alpine shrubCortés, A. J.; Waeber, S.; Lexer, C.; Sedlacek, J.; Wheeler, J. A.; Van Kleunen, M.; Bossdorf, O.; Hoch, G.; Rixen, C.; Wipf, S.; Karrenberg, S.;Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change.
Heredity arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2014Data sources: Konstanzer Online-Publikations-SystemEberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/hdy.2014.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Heredity arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2014Data sources: Konstanzer Online-Publikations-SystemEberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/hdy.2014.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Authors: Kosanic, A; Kavcic, I; van Kleunen, M; Harrison, S;AbstractAlthough there are great concerns to what extent current and future climate change impacts biodiversity across different spatial and temporal scales, we still lack a clear information on different climate change metrics across fine spatial scales. Here we present an analysis of climate change and climate change velocity at a local scale (1 × 1 km) across Germany. We focus on seasonal climate variability and velocity and investigate changes in three time periods (1901–2015, 1901–1950 and 1951–2015) using a novel statistical approach. Our results on climate variability showed the highest trends for the 1951–2015 time period. The strongest (positive/negative) and spatially the most dispersed trends were found for Summer maximum temperature and Summer minimum temperatures. For precipitation the strongest positive trends were most pronounced in the summer (1951–2015) and winter (1901–2015). Results for climate change velocity showed that almost 90% of temperature velocities were in the range of 0.5 to 3 km/year, whereas all climate velocities for precipitation were within the range of −3.5 to 4.5 km/year. The key results amplify the need for more local and regional scale studies to better understand species individualistic responses to recent climate change and allow for more accurate future projections and conservation strategies.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/36058Data sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2019Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-38720-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/36058Data sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2019Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-38720-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:Springer Science and Business Media LLC Zhijie Zhang; Yanjie Liu; Angelina Hardrath; Huifei Jin; Mark van Kleunen;AbstractInvasion by non-native plants is frequently attributed to increased resource availability. Still, our understanding is mainly based on effects of single resources and on plants grown without competition despite the fact that plants rely on multiple resources and usually grow in competition. How multiple resources affects competition between native and non-native plants remains largely unexplored. Here, with two similar common garden experiments, one in China and one in Germany, we tested whether nutrient and light availabilities affected the competitive outcomes, in terms of biomass production, between native and naturalized non-native plants. We found that under low resource availability or with addition of only one type of resource non-natives were not more competitive than natives. However, with a joint increase of nutrients and light intensity, non-natives were more competitive than natives. Our finding indicates that addition of multiple resources could greatly reduce the niche dimensionality (i.e. number of limiting factors), favoring dominance of non-native species. It also indicates that habitats experiencing multiple global changes might be more vulnerable to plant invasion.
Communications Biolo... arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2022Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-022-04113-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Communications Biolo... arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2022Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-022-04113-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Switzerland, United Kingdom, GermanyPublisher:Oxford University Press (OUP) Yanjie Liu; Emily Haeuser; Wayne Dawson; Wayne Dawson; Yanhao Feng; Daniel Prati; Mark van Kleunen;It is frequently assumed that phenotypic plasticity can be very advantageous for plants, because it may increase environmental tolerance (fitness homeostasis). This should, however, only hold for plastic responses that are adaptive, i.e. increase fitness. Numerous studies have shown shade-induced increases in specific leaf area (SLA), and there is wide consensus that this plastic response optimizes light capture and thus has to be adaptive. However, it has rarely been tested whether this is really the case.In order to identify whether SLA plasticity does contribute to the maintenance of high biomass of plant species under shaded conditions, a meta-analytical approach was employed. The data set included 280 species and 467 individual studies from 32 publications and two unpublished experiments.Plants increased their SLA by 55·4 % on average when shaded, while they decreased their biomass by 59·9 %. Species with a high SLA under high-light control conditions showed a significantly greater ability to maintain biomass production under shade overall. However, in contrast to the expectation of a positive relationship between SLA plasticity and maintenance of plant biomass, the results indicated that species with greater SLA plasticity were less able to maintain biomass under shade.Although a high SLA per se contributes to biomass homeostasis, there was no evidence that plasticity in SLA contributes to this. Therefore, it is argued that some of the plastic changes that are frequently thought to be adaptive might simply reflect passive responses to the environment, or result as by-products of adaptive plastic responses in other traits.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/88003/1/mcw180.pdfData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/19694/1/19694.pdfData sources: Durham Research OnlineKonstanzer Online-Publikations-SystemArticle . 2016Data sources: Konstanzer Online-Publikations-SystemDurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcw180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/88003/1/mcw180.pdfData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/19694/1/19694.pdfData sources: Durham Research OnlineKonstanzer Online-Publikations-SystemArticle . 2016Data sources: Konstanzer Online-Publikations-SystemDurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcw180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Cai Cheng; Zekang Liu; Wei Song; Xue Chen; Zhijie Zhang; Bo Li; Mark van Kleunen; Jihua Wu;AbstractBiodiversity often helps communities resist invasion. However, it is unclear whether this diversity–invasion relationship holds true under environmental changes. Here, we conduct a meta-analysis of 1010 observations from 25 grassland studies in which plant species richness is manipulated together with one or more environmental change factors to test invasibility (measured by biomass or cover of invaders). We find that biodiversity increases resistance to invaders across various environmental conditions. However, the positive biodiversity effect on invasion resistance is strengthened under experimental warming, whereas it is weakened under experimentally imposed drought. When multiple factors are imposed simultaneously, the positive biodiversity effect is strengthened. Overall, we show that biodiversity helps grassland communities resist plant invasions under multiple environmental changes. Therefore, investment in the protection and restoration of native biodiversity is not only important for prevention of invasions under current conditions but also under continued global environmental change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48876-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48876-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, GermanyPublisher:The Royal Society Authors: Martí March-Salas; Mark van Kleunen; Mark van Kleunen; Patrick S. Fitze;Current climate change is characterized by an increase in weather variability, which includes altered means, variance and predictability of weather parameters, and which may affect an organism's ecology and evolution. Few studies have experimentally manipulated the variability of weather parameters, and very little is known about the effects of changes in the intrinsic predictability of weather parameters on living organisms. Here, we experimentally tested the effects of differences in intrinsic precipitation-predictability on two herbaceous plants ( Onobrychis viciifolia and Papaver rhoeas ). Lower precipitation-predictability led to phenological advance and to an increase in reproductive success, and population growth. Both species exhibited rapid transgenerational responses in phenology and fitness-related traits across four generations that mitigated most effects of precipitation-predictability on fitness proxies of ancestors. Transgenerational responses appeared to be the result of changes in phenotypic plasticity rather than local adaptation. They mainly existed with respect to conditions prevailing during early, but not during late growth, suggesting that responses to differences in predictability during late growth might be more difficult. The results show that lower short-term predictability of precipitation positively affected fitness, rapid transgenerational responses existed and different time scales of predictability (short-term, seasonal and transgenerational predictability) may affect organisms differently. This shows that the time scale of predictability should be considered in evolutionary and ecological theories, and in assessments of the consequences of climate change.
Proceedings of the R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAKonstanzer Online-Publikations-SystemArticle . 2019Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.1486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 30visibility views 30 download downloads 47 Powered bymore_vert Proceedings of the R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAKonstanzer Online-Publikations-SystemArticle . 2019Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.1486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Springer Science and Business Media LLC Zhen Zhang; Min Liu; Yanjie Liu; Yanjie Liu; Mark van Kleunen; Mark van Kleunen; Yuqiang Tian; Xingliang Xu;pmid: 29974246
Plant invasions are a major component of global change, but they may be affected by other global change components. Here we used a mesocosm-pot experiment to test whether high water availability, nitrogen (N) enrichment and their interaction promote performance of three invasive alien plants (Lepidium virginicum, Lolium perenne and Medicago sativa) when competing with a native Chinese grassland species (Agropyron cristatum). Single plants of the three invasive and the one native species were grown in the center of pots with a matrix of the native A. cristatum under low, intermediate or high water availability and low or high N availability. The invasive species L. virginicum and M. sativa grew larger, and produced a higher biomass relative to competitors than the native species A. cristatum did. Increasing water availability promoted biomass production of all species, but water availability did not change the biomass of the central plants relative to that of the competitors. Nitrogen addition also increased biomass production of all species, and it increased the biomass of the central plants more so than that of the competitors. The positive effect of N addition on the biomass of the central plants relative to that of the competitors increased with increasing water availability. However, compared to central plants of the native species, the positive effect of N addition on the relative biomass of L. virginicum decreased when water availability increased. These interactions indicate that future changes in water availability and N enrichment may affect the invasion success of different alien species differently.
Oecologia arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2018Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-018-4216-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2018Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-018-4216-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 10 Feb 2024 Switzerland, Germany, Switzerland, France, Germany, Germany, Norway, France, Germany, Netherlands, FrancePublisher:Springer Science and Business Media LLC Funded by:DFGDFGAuthors: Margot Neyret; Gaëtane Le Provost; Andrea Larissa Boesing; Florian D. Schneider; +49 AuthorsMargot Neyret; Gaëtane Le Provost; Andrea Larissa Boesing; Florian D. Schneider; Dennis Baulechner; Joana Bergmann; Franciska T. de Vries; Anna Maria Fiore-Donno; Stefan Geisen; Kezia Goldmann; Anna Merges; Ruslan A. Saifutdinov; Nadja K. Simons; Joseph A. Tobias; Andrey S. Zaitsev; Martin M. Gossner; Kirsten Jung; Ellen Kandeler; Jochen Krauss; Caterina Penone; Michael Schloter; Stefanie Schulz; Michael Staab; Volkmar Wolters; Antonios Apostolakis; Klaus Birkhofer; Steffen Boch; Runa S. Boeddinghaus; Ralph Bolliger; Michael Bonkowski; François Buscot; Kenneth Dumack; Markus Fischer; Huei Ying Gan; Johannes Heinze; Norbert Hölzel; Katharina John; Valentin H. Klaus; Till Kleinebecker; Sven Marhan; Jörg Müller; Swen C. Renner; Matthias C. Rillig; Noëlle V. Schenk; Ingo Schöning; Marion Schrumpf; Sebastian Seibold; Stephanie A. Socher; Emily F. Solly; Miriam Teuscher; Mark van Kleunen; Tesfaye Wubet; Peter Manning;doi: 10.1038/s41467-024-45113-5 , 10.3929/ethz-b-000660119 , 10.48350/192787 , 10.17169/refubium-42989
pmid: 38341437
pmc: PMC10858939
AbstractOrganismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a ‘slow-fast’ axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that ‘slow’ and ‘fast’ strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2024License: CC BYFull-Text: https://hdl.handle.net/11250/3181911Data sources: Bielefeld Academic Search Engine (BASE)Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45113-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2024License: CC BYFull-Text: https://hdl.handle.net/11250/3181911Data sources: Bielefeld Academic Search Engine (BASE)Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45113-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2010 Australia, United StatesPublisher:Elsevier BV Nicotra, Adrienne; Atkin, Owen; Bonser, S P; Davidson, Amy; Finnegan , E J; Mathesius, Ulrike; Poot, Pieter; Purruggana, M D; Richards, Christina; Valladares, Fernando; van Kleunen, Mark;Climate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants. Here, we provide a toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change. By bringing ecological, evolutionary, physiological and molecular perspectives together, we hope to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/28486Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2010.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 1,639 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/28486Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2010.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Spain, Switzerland, Germany, SwitzerlandPublisher:Wiley Funded by:EC | ECOGENESEC| ECOGENESMark van Kleunen; Mark van Kleunen; Markus Fischer; Wayne Dawson; Wayne Dawson; Rudolf P. Rohr; Rudolf P. Rohr;See also the Commentary by Davidson and Nicotra
New Phytologist arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAKonstanzer Online-Publikations-SystemArticle . 2012Data sources: Konstanzer Online-Publikations-SystemNew PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04104.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 38visibility views 38 download downloads 53 Powered bymore_vert New Phytologist arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAKonstanzer Online-Publikations-SystemArticle . 2012Data sources: Konstanzer Online-Publikations-SystemNew PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04104.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Switzerland, Germany, GermanyPublisher:Springer Science and Business Media LLC Funded by:SNSF | Growth limitations, pheno...SNSF| Growth limitations, phenotypic plasticity and micro-evolution in a long-lived alpine shrubCortés, A. J.; Waeber, S.; Lexer, C.; Sedlacek, J.; Wheeler, J. A.; Van Kleunen, M.; Bossdorf, O.; Hoch, G.; Rixen, C.; Wipf, S.; Karrenberg, S.;Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change.
Heredity arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2014Data sources: Konstanzer Online-Publikations-SystemEberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/hdy.2014.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Heredity arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2014Data sources: Konstanzer Online-Publikations-SystemEberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/hdy.2014.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Authors: Kosanic, A; Kavcic, I; van Kleunen, M; Harrison, S;AbstractAlthough there are great concerns to what extent current and future climate change impacts biodiversity across different spatial and temporal scales, we still lack a clear information on different climate change metrics across fine spatial scales. Here we present an analysis of climate change and climate change velocity at a local scale (1 × 1 km) across Germany. We focus on seasonal climate variability and velocity and investigate changes in three time periods (1901–2015, 1901–1950 and 1951–2015) using a novel statistical approach. Our results on climate variability showed the highest trends for the 1951–2015 time period. The strongest (positive/negative) and spatially the most dispersed trends were found for Summer maximum temperature and Summer minimum temperatures. For precipitation the strongest positive trends were most pronounced in the summer (1951–2015) and winter (1901–2015). Results for climate change velocity showed that almost 90% of temperature velocities were in the range of 0.5 to 3 km/year, whereas all climate velocities for precipitation were within the range of −3.5 to 4.5 km/year. The key results amplify the need for more local and regional scale studies to better understand species individualistic responses to recent climate change and allow for more accurate future projections and conservation strategies.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/36058Data sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2019Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-38720-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/36058Data sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2019Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-38720-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:Springer Science and Business Media LLC Zhijie Zhang; Yanjie Liu; Angelina Hardrath; Huifei Jin; Mark van Kleunen;AbstractInvasion by non-native plants is frequently attributed to increased resource availability. Still, our understanding is mainly based on effects of single resources and on plants grown without competition despite the fact that plants rely on multiple resources and usually grow in competition. How multiple resources affects competition between native and non-native plants remains largely unexplored. Here, with two similar common garden experiments, one in China and one in Germany, we tested whether nutrient and light availabilities affected the competitive outcomes, in terms of biomass production, between native and naturalized non-native plants. We found that under low resource availability or with addition of only one type of resource non-natives were not more competitive than natives. However, with a joint increase of nutrients and light intensity, non-natives were more competitive than natives. Our finding indicates that addition of multiple resources could greatly reduce the niche dimensionality (i.e. number of limiting factors), favoring dominance of non-native species. It also indicates that habitats experiencing multiple global changes might be more vulnerable to plant invasion.
Communications Biolo... arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2022Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-022-04113-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Communications Biolo... arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2022Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-022-04113-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Switzerland, United Kingdom, GermanyPublisher:Oxford University Press (OUP) Yanjie Liu; Emily Haeuser; Wayne Dawson; Wayne Dawson; Yanhao Feng; Daniel Prati; Mark van Kleunen;It is frequently assumed that phenotypic plasticity can be very advantageous for plants, because it may increase environmental tolerance (fitness homeostasis). This should, however, only hold for plastic responses that are adaptive, i.e. increase fitness. Numerous studies have shown shade-induced increases in specific leaf area (SLA), and there is wide consensus that this plastic response optimizes light capture and thus has to be adaptive. However, it has rarely been tested whether this is really the case.In order to identify whether SLA plasticity does contribute to the maintenance of high biomass of plant species under shaded conditions, a meta-analytical approach was employed. The data set included 280 species and 467 individual studies from 32 publications and two unpublished experiments.Plants increased their SLA by 55·4 % on average when shaded, while they decreased their biomass by 59·9 %. Species with a high SLA under high-light control conditions showed a significantly greater ability to maintain biomass production under shade overall. However, in contrast to the expectation of a positive relationship between SLA plasticity and maintenance of plant biomass, the results indicated that species with greater SLA plasticity were less able to maintain biomass under shade.Although a high SLA per se contributes to biomass homeostasis, there was no evidence that plasticity in SLA contributes to this. Therefore, it is argued that some of the plastic changes that are frequently thought to be adaptive might simply reflect passive responses to the environment, or result as by-products of adaptive plastic responses in other traits.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/88003/1/mcw180.pdfData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/19694/1/19694.pdfData sources: Durham Research OnlineKonstanzer Online-Publikations-SystemArticle . 2016Data sources: Konstanzer Online-Publikations-SystemDurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcw180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/88003/1/mcw180.pdfData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/19694/1/19694.pdfData sources: Durham Research OnlineKonstanzer Online-Publikations-SystemArticle . 2016Data sources: Konstanzer Online-Publikations-SystemDurham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcw180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Cai Cheng; Zekang Liu; Wei Song; Xue Chen; Zhijie Zhang; Bo Li; Mark van Kleunen; Jihua Wu;AbstractBiodiversity often helps communities resist invasion. However, it is unclear whether this diversity–invasion relationship holds true under environmental changes. Here, we conduct a meta-analysis of 1010 observations from 25 grassland studies in which plant species richness is manipulated together with one or more environmental change factors to test invasibility (measured by biomass or cover of invaders). We find that biodiversity increases resistance to invaders across various environmental conditions. However, the positive biodiversity effect on invasion resistance is strengthened under experimental warming, whereas it is weakened under experimentally imposed drought. When multiple factors are imposed simultaneously, the positive biodiversity effect is strengthened. Overall, we show that biodiversity helps grassland communities resist plant invasions under multiple environmental changes. Therefore, investment in the protection and restoration of native biodiversity is not only important for prevention of invasions under current conditions but also under continued global environmental change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48876-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48876-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, GermanyPublisher:The Royal Society Authors: Martí March-Salas; Mark van Kleunen; Mark van Kleunen; Patrick S. Fitze;Current climate change is characterized by an increase in weather variability, which includes altered means, variance and predictability of weather parameters, and which may affect an organism's ecology and evolution. Few studies have experimentally manipulated the variability of weather parameters, and very little is known about the effects of changes in the intrinsic predictability of weather parameters on living organisms. Here, we experimentally tested the effects of differences in intrinsic precipitation-predictability on two herbaceous plants ( Onobrychis viciifolia and Papaver rhoeas ). Lower precipitation-predictability led to phenological advance and to an increase in reproductive success, and population growth. Both species exhibited rapid transgenerational responses in phenology and fitness-related traits across four generations that mitigated most effects of precipitation-predictability on fitness proxies of ancestors. Transgenerational responses appeared to be the result of changes in phenotypic plasticity rather than local adaptation. They mainly existed with respect to conditions prevailing during early, but not during late growth, suggesting that responses to differences in predictability during late growth might be more difficult. The results show that lower short-term predictability of precipitation positively affected fitness, rapid transgenerational responses existed and different time scales of predictability (short-term, seasonal and transgenerational predictability) may affect organisms differently. This shows that the time scale of predictability should be considered in evolutionary and ecological theories, and in assessments of the consequences of climate change.
Proceedings of the R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAKonstanzer Online-Publikations-SystemArticle . 2019Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.1486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 30visibility views 30 download downloads 47 Powered bymore_vert Proceedings of the R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAKonstanzer Online-Publikations-SystemArticle . 2019Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.1486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Springer Science and Business Media LLC Zhen Zhang; Min Liu; Yanjie Liu; Yanjie Liu; Mark van Kleunen; Mark van Kleunen; Yuqiang Tian; Xingliang Xu;pmid: 29974246
Plant invasions are a major component of global change, but they may be affected by other global change components. Here we used a mesocosm-pot experiment to test whether high water availability, nitrogen (N) enrichment and their interaction promote performance of three invasive alien plants (Lepidium virginicum, Lolium perenne and Medicago sativa) when competing with a native Chinese grassland species (Agropyron cristatum). Single plants of the three invasive and the one native species were grown in the center of pots with a matrix of the native A. cristatum under low, intermediate or high water availability and low or high N availability. The invasive species L. virginicum and M. sativa grew larger, and produced a higher biomass relative to competitors than the native species A. cristatum did. Increasing water availability promoted biomass production of all species, but water availability did not change the biomass of the central plants relative to that of the competitors. Nitrogen addition also increased biomass production of all species, and it increased the biomass of the central plants more so than that of the competitors. The positive effect of N addition on the biomass of the central plants relative to that of the competitors increased with increasing water availability. However, compared to central plants of the native species, the positive effect of N addition on the relative biomass of L. virginicum decreased when water availability increased. These interactions indicate that future changes in water availability and N enrichment may affect the invasion success of different alien species differently.
Oecologia arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2018Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-018-4216-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2018Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-018-4216-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 10 Feb 2024 Switzerland, Germany, Switzerland, France, Germany, Germany, Norway, France, Germany, Netherlands, FrancePublisher:Springer Science and Business Media LLC Funded by:DFGDFGAuthors: Margot Neyret; Gaëtane Le Provost; Andrea Larissa Boesing; Florian D. Schneider; +49 AuthorsMargot Neyret; Gaëtane Le Provost; Andrea Larissa Boesing; Florian D. Schneider; Dennis Baulechner; Joana Bergmann; Franciska T. de Vries; Anna Maria Fiore-Donno; Stefan Geisen; Kezia Goldmann; Anna Merges; Ruslan A. Saifutdinov; Nadja K. Simons; Joseph A. Tobias; Andrey S. Zaitsev; Martin M. Gossner; Kirsten Jung; Ellen Kandeler; Jochen Krauss; Caterina Penone; Michael Schloter; Stefanie Schulz; Michael Staab; Volkmar Wolters; Antonios Apostolakis; Klaus Birkhofer; Steffen Boch; Runa S. Boeddinghaus; Ralph Bolliger; Michael Bonkowski; François Buscot; Kenneth Dumack; Markus Fischer; Huei Ying Gan; Johannes Heinze; Norbert Hölzel; Katharina John; Valentin H. Klaus; Till Kleinebecker; Sven Marhan; Jörg Müller; Swen C. Renner; Matthias C. Rillig; Noëlle V. Schenk; Ingo Schöning; Marion Schrumpf; Sebastian Seibold; Stephanie A. Socher; Emily F. Solly; Miriam Teuscher; Mark van Kleunen; Tesfaye Wubet; Peter Manning;doi: 10.1038/s41467-024-45113-5 , 10.3929/ethz-b-000660119 , 10.48350/192787 , 10.17169/refubium-42989
pmid: 38341437
pmc: PMC10858939
AbstractOrganismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a ‘slow-fast’ axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that ‘slow’ and ‘fast’ strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2024License: CC BYFull-Text: https://hdl.handle.net/11250/3181911Data sources: Bielefeld Academic Search Engine (BASE)Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45113-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2024License: CC BYFull-Text: https://hdl.handle.net/11250/3181911Data sources: Bielefeld Academic Search Engine (BASE)Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45113-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu