- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Funded by:EC | SALTOpowerEC| SALTOpowerAuthors: D'Auria, Marco; Grena, Roberto; Lanchi, Michela; Liberatore, Raffaele;doi: 10.3390/en17184541
handle: 20.500.12079/81248
About one-third of world energy production is destined to the industrial sector, with process heat accounting for about 70% of this demand; almost half of this quota is required by endothermic processes operating at temperatures above 400 °C. Concentrated solar thermal technology, thanks to cost-effective high-temperature thermal energy storage solutions, can respond to the renewable thermal energy needs of the industrial sector, thus supporting the decarbonization of hard-to-abate processes. Particularly, parabolic trough technology using binary molten salts as heat transfer fluid and storage medium, operating up to 550 °C, could potentially supply a large part of the high-temperature process heat required by the industry. In this work, four industrial processes, representative of the Italian industrial context, that are well suited for integration with molten salt concentrators are presented and discussed, conceiving for each considered process a specific coupling solution with the solar plant, sizing the solar field and the thermal storage unit, and computing the cost of the process heat and its variation with the storage capacity. Considering cost data from the literature associated with the pre-COVID-19 era, an LCOH comprising the range 5–10 c€/kWhth was obtained for all the cases studied, while taking into account more updated cost data, the calculated LCOH varies from 7 to 13 c€/kWhth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Miliozzi, Adio; Dominici, Franco; Candelori, Mauro; Veca, Elisabetta; Liberatore, Raffaele; Nicolini, Daniele; Torre, Luigi;doi: 10.3390/en14154410
handle: 11391/1503702
Thermal energy storage (TES) systems for concentrated solar power plants are essential for the convenience of renewable energy sources in terms of energy dispatchability, economical aspects and their larger use. TES systems based on the use of concrete have been demonstrated to possess good heat exchange characteristics, wide availability of the heat storage medium and low cost. Therefore, the purpose of this work was the development and characterization of a new concrete-based heat storage material containing a concrete mix capable of operating at medium–high temperatures with improved performance. In this work, a small amount of shape-stabilized phase change material (PCM) was included, thus developing a new material capable of storing energy both as sensible and latent heat. This material was therefore characterized thermally and mechanically and showed increased thermal properties such as stored energy density (up to +7%, with a temperature difference of 100 °C at an average operating temperature of 250 °C) when 5 wt% of PCM was added. By taking advantage of these characteristics, particularly the higher energy density, thermal energy storage systems that are more compact and economically feasible can be built to operate within a temperature range of approximately 150–350 °C with a reduction, compared to a concrete-only based thermal energy storage system, of approximately 7% for the required volume and cost.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4410/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4410/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Sau, Giovanni Salvatore; Tripi, Valerio; Tizzoni, Anna Chiara; Liberatore, Raffaele; +6 AuthorsSau, Giovanni Salvatore; Tripi, Valerio; Tizzoni, Anna Chiara; Liberatore, Raffaele; Mansi, Emiliana; Spadoni, Annarita; Corsaro, Natale; Capocelli, Mauro; Delise, Tiziano; Della Libera, Anna;doi: 10.3390/en14175339
Molten salts eutectics are promising candidates as phase change materials (PCMs) for thermal storage applications, especially considering the possibility to store and release heat at high temperatures. Although many compounds have been proposed for this purpose in the scientific literature, very few data are available regarding actual applications. In particular, there is a lack of information concerning thermal storage at temperatures around 600 °C, necessary for the coupling with a highly efficient Rankine cycle powered by concentrated solar power (CSP) plants. In this contest, the present work deals with a thermophysical behavior investigation of a storage heat exchanger containing a cost-effective and safe ternary eutectic, consisting of sodium chloride, potassium chloride, and sodium carbonate. This material was preliminarily and properly selected and characterized to comply with the necessary melting temperature and latent enthalpy. Then, an indirect heat exchanger was considered for the simulation, assuming aluminum capsules to confine the PCM, thus obtaining the maximum possible heat exchange surface and air at 5 bar as heat transfer fluid (HTF). The modelling was carried out setting the inlet and outlet air temperatures at, respectively, 290 °C and 550 °C, obtaining a realistic storage efficiency of around 0.6. Finally, a conservative investment cost was estimated for the storage system, demonstrating a real possible economic benefit in using these types of materials and heat exchange geometries, with the results varying, according to possible manufacturing prices, in a range from 25 to 40 EUR/kWh.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Sau, S; Corsaro, N; Crescenzi, T; Liberatore, R; Russo, V; Tarquini, P; Tizzoni, A.; D'OTTAVI, CADIA; LICOCCIA, SILVIA;handle: 2108/140714
Abstract The employment of parabolic trough solar power plants (PT-CSP) for electrical power and process heat generation is one of the most promising technologies for carbon free energy production. The selection of thermal fluids, both for the heat transfer (heat transfer fluid, HTF) and the storage (heat storage material, HSM), is a crucial point for increasing CSP efficiency and cost effectiveness. In this paper two different PT-CSP configurations, both presenting a double tanks storage system, are compared. In particular, two different medium size (50 MWe) plant schemes, presenting two different working fluids as HTF, are described and analysed. In the first scheme a “binary” molten salt mixture, composed of sodium and potassium nitrate, is considered, while, in the second one, the employment, as HTF, of a “ternary” mixture, consisting of sodium potassium and lithium nitrates, is investigated. In both cases, the binary mixture is used for thermal storage (HSM). The first scheme represents the configuration developed by ENEA and already used for the Archimede plant in Priolo Gargallo (Sicily-Italy). The second one is an innovative proposal, which aims to improve CSP plants performances and to reduce operating costs. In particular, since the ternary mixture has a considerably lower freezing temperature than the binary one, this solution allows to keep the system at a lower temperature overnight, so reducing thermal energy losses. In first instance, it is necessary to characterize the binary and ternary mixtures respect to their thermo-physical features. The two CSP configurations are then sized and, by a techno/economic evaluation, compared with respect to the calculated unit cost of electricity production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV Authors: Miliozzi, A.; Liberatore, R.; Crescenzi, T.; Veca, E.;handle: 20.500.12079/5762
AbstractThermal energy storage is a key factor for efficiency, dispatchability and economic sustainability of concentrated solar plants. The latent heat storage systems could ensure a significant reduction in construction costs and environmental impact, because of its high storage energy density. In LHTES, the heat transfer between the heat transfer fluid and the storage system is strongly limited by the reduced thermal conductivity of the storage media. For operating temperatures between 200 and 600°C, the most used storage media are salts. In order to evaluate solutions which promote the thermal conductivity, by increasing the exchange surface and/or the addition of nanoparticles to the storage media, Enea set up a small facility to test some storage concepts. In this facility, a diathermic oil flows through three elementary “shell-and-tube” storage systems, connected in series, reaching a maximum temperature of about 280°C. The elementary storage systems are filled with a mixture of sodium and potassium nitrates salts, which melt at about 225°C. Moreover a small percentage of alumina and silica nanoparticles were added to this mixture. The results of the experiments show an increase of the thermal diffusivity of the medium not only for the presence of fins on the heat transfer tubes but also because of convective flows within the melted fraction were established. These phenomena strongly reduce the charging times of the system (by about 30%). Instead, the presence of nanoparticles increases the thermal capacity and the thermal conductivity of the storage system but seems not to have a relevant effect on the thermal diffusivity of the mixture. This behavior depends on the type of used nanoparticles, which can significantly change over time some characteristics of the storage medium, in which they are dispersed, leaving other characteristics unchanged, according to mechanisms which are still to be well understood.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Giannuzzi, Giuseppe M.; Liberatore, Raffaele; Mele, Domenico; Mazzucco, Gianluca; +4 AuthorsGiannuzzi, Giuseppe M.; Liberatore, Raffaele; Mele, Domenico; Mazzucco, Gianluca; Xotta, Giovanna; Salomoni, Valentina A.; Maiorana, Carmelo; Di Maggio, Rosa;handle: 11572/200091 , 11577/3257142
Abstract A three-stage study on the behaviour of storage plants employing concrete with upgraded thermo-mechanical characteristics is here developed. The first stage defines the experimental campaign on a mixing at improved conductivity, via the SolTeCa experimental system, with review of the storage elements geometry, location of thermocouples and cycling procedures. The experimental results, obtained by ENEA via a comparison with appropriately performed numerical calculations, are interpreted during the second stage. Finally, a first design of a new equipment for the thermal cycling of storage elements up to 400 °C is proposed, based on Joule-effect heating. The numerical results are reported, in order to understand the thermal dynamics as well as the induced thermo-mechanical effects on concrete elements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Lanchi M.; Turchetti L.; Sau S.; Liberatore R.; Cerbelli S.; Murmura M. A.; Annesini M. C.;doi: 10.3390/en13184940
handle: 11573/1444795
One of the most interesting perspectives for the development of concentrated solar power (CSP) is the storage of solar energy on a seasonal basis, intending to exploit the summer solar radiation in excess and use it in the winter months, thus stabilizing the yearly production and increasing the capacity factor of the plant. By using materials subject to reversible chemical reactions, and thus storing the thermal energy in the form of chemical energy, thermochemical storage systems can potentially serve to this purpose. The present work focuses on the identification of possible integration solutions between CSP plants and thermochemical systems for long-term energy storage, particularly for high-temperature systems such as central receiver plants. The analysis is restricted to storage systems potentially compatible with temperatures ranging from 700 to 1000 °C and using gases as heat transfer fluids. On the basis of the solar plant specifications, suitable reactive systems are identified and the process interfaces for the integration of solar plant/storage system/power block are discussed. The main operating conditions of the storage unit are defined for each considered case through process simulation.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4940/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1444795/1/Lanchi_discussion-possible-approaches_2020.pdfData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4940/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1444795/1/Lanchi_discussion-possible-approaches_2020.pdfData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 GermanyPublisher:Inderscience Publishers Galzim, O.; Mansilla, C.; Giaconia, A.; Poitou, S.; Hinkley, J.; Ebbesen, S.; Gasik, M.; Gilardi,, T.; Le Naour, F.; Robin, J.-C.; Graf, Daniela; Roeb, Martin; Sattler, Christian; Liberatore, R.; Tarquini, P.; Moliner, R.; Suelves,, I.; Gstoehl, D.; Vogt, U.; Allen, R.W.K.; Kolb, G.J.;Hydrogen demand has already significantly increased due to the industry needs. Mature technologies based on fossil fuels are not satisfactory due to greenhouse gas concerns. In response, a range of advanced processes are being developed throughout the world. Within the ‘International Energy Agency – Hydrogen Implementing Agreement – Task 25’, a multicriteria methodology was developed for the evaluation of high temperature hydrogen production processes. The aim is to guide R&D strategy by highlighting to which extent the processes may appear promising. The method that was developed is based on the elimination and choice translating the reality (ELECTRE). This study has conducted a first pass application to hydrogen production and highlights the importance of significant weightings and discriminating criteria. Decision makers can apply this method to extract their own subset of processes from the alternatives, according to their system of values defined through the selection of criteria and the associated weights.
International Journa... arrow_drop_down International Journal of Multicriteria Decision MakingArticle . 2011 . Peer-reviewedData sources: CrossrefInternational Journal of Multicriteria Decision MakingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ijmcdm.2011.039586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Multicriteria Decision MakingArticle . 2011 . Peer-reviewedData sources: CrossrefInternational Journal of Multicriteria Decision MakingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ijmcdm.2011.039586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Alberto Giaconia; Michela Lanchi; Pietro Tarquini; Raffaele Liberatore;Abstract The faster and faster global growth of energy consumption generates serious problems on its supply and about the pollution that may result. Through the use of thermochemical cycles it is possible to use renewable energy to produce hydrogen from water, with the dual purpose of having an unlimited source of energy without producing greenhouse gases. This paper provides an energy assessment and a preliminary design of an industrial plant for the production of 100 tons/day of hydrogen by sulfur-iodine thermochemical cycle. Afterwards, an economic analysis is performed to assess the hydrogen production cost, with the assumption to power the process by solar energy. For this purpose, a double solar facility is sized: a parabolic trough plant, for the mean temperature duties, and a central receiver tower one for the higher temperature duties. The efficiency of the thermochemical cycle by itself is about 34%. If this value is associated with the electrical energy production, including the efficiency of the solar plants, the total heat-to-hydrogen efficiency of 21% is obtained, with a hydrogen production cost of about 8.3 €/kg.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.03.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.03.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Gallucci F.; Liberatore R.; Sapegno L.; Volponi E.; Venturini P.; Rispoli F.; Paris E.; Carnevale M.; Colantoni A.;doi: 10.3390/en13010102
handle: 11573/1440995
This work aims to study the influence of an oxidant agent on syngas quality. A series of tests using air and steam as oxidant agents have been performed and the results compared with those of a pyrolysis test used as a reference. Tests were carried out at Sapienza University of Rome, using an updraft reactor. The reactor was fed with hazelnut shells, waste biomass commonly available in some parts of Italy. Temperature distribution, syngas composition and heating value, and producible energy were measured. Air and steam gasification tests produced about the same amount of syngas flow, but with a different quality. The energy flow in air gasification had the smallest measurement during the experiments. On the contrary, steam gasification produced a syngas flow with higher quality (13.1 MJ/Nm3), leading to the best values of energy flow (about 5.4 MJ/s vs. 3.3 MJ/s in the case of air gasification). From the cold gas efficiency point of view, steam gasification is still the best solution, even considering the effect of the enthalpy associated with the steam injected within the gasification reactor.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/102/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/102/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Funded by:EC | SALTOpowerEC| SALTOpowerAuthors: D'Auria, Marco; Grena, Roberto; Lanchi, Michela; Liberatore, Raffaele;doi: 10.3390/en17184541
handle: 20.500.12079/81248
About one-third of world energy production is destined to the industrial sector, with process heat accounting for about 70% of this demand; almost half of this quota is required by endothermic processes operating at temperatures above 400 °C. Concentrated solar thermal technology, thanks to cost-effective high-temperature thermal energy storage solutions, can respond to the renewable thermal energy needs of the industrial sector, thus supporting the decarbonization of hard-to-abate processes. Particularly, parabolic trough technology using binary molten salts as heat transfer fluid and storage medium, operating up to 550 °C, could potentially supply a large part of the high-temperature process heat required by the industry. In this work, four industrial processes, representative of the Italian industrial context, that are well suited for integration with molten salt concentrators are presented and discussed, conceiving for each considered process a specific coupling solution with the solar plant, sizing the solar field and the thermal storage unit, and computing the cost of the process heat and its variation with the storage capacity. Considering cost data from the literature associated with the pre-COVID-19 era, an LCOH comprising the range 5–10 c€/kWhth was obtained for all the cases studied, while taking into account more updated cost data, the calculated LCOH varies from 7 to 13 c€/kWhth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Miliozzi, Adio; Dominici, Franco; Candelori, Mauro; Veca, Elisabetta; Liberatore, Raffaele; Nicolini, Daniele; Torre, Luigi;doi: 10.3390/en14154410
handle: 11391/1503702
Thermal energy storage (TES) systems for concentrated solar power plants are essential for the convenience of renewable energy sources in terms of energy dispatchability, economical aspects and their larger use. TES systems based on the use of concrete have been demonstrated to possess good heat exchange characteristics, wide availability of the heat storage medium and low cost. Therefore, the purpose of this work was the development and characterization of a new concrete-based heat storage material containing a concrete mix capable of operating at medium–high temperatures with improved performance. In this work, a small amount of shape-stabilized phase change material (PCM) was included, thus developing a new material capable of storing energy both as sensible and latent heat. This material was therefore characterized thermally and mechanically and showed increased thermal properties such as stored energy density (up to +7%, with a temperature difference of 100 °C at an average operating temperature of 250 °C) when 5 wt% of PCM was added. By taking advantage of these characteristics, particularly the higher energy density, thermal energy storage systems that are more compact and economically feasible can be built to operate within a temperature range of approximately 150–350 °C with a reduction, compared to a concrete-only based thermal energy storage system, of approximately 7% for the required volume and cost.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4410/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4410/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Sau, Giovanni Salvatore; Tripi, Valerio; Tizzoni, Anna Chiara; Liberatore, Raffaele; +6 AuthorsSau, Giovanni Salvatore; Tripi, Valerio; Tizzoni, Anna Chiara; Liberatore, Raffaele; Mansi, Emiliana; Spadoni, Annarita; Corsaro, Natale; Capocelli, Mauro; Delise, Tiziano; Della Libera, Anna;doi: 10.3390/en14175339
Molten salts eutectics are promising candidates as phase change materials (PCMs) for thermal storage applications, especially considering the possibility to store and release heat at high temperatures. Although many compounds have been proposed for this purpose in the scientific literature, very few data are available regarding actual applications. In particular, there is a lack of information concerning thermal storage at temperatures around 600 °C, necessary for the coupling with a highly efficient Rankine cycle powered by concentrated solar power (CSP) plants. In this contest, the present work deals with a thermophysical behavior investigation of a storage heat exchanger containing a cost-effective and safe ternary eutectic, consisting of sodium chloride, potassium chloride, and sodium carbonate. This material was preliminarily and properly selected and characterized to comply with the necessary melting temperature and latent enthalpy. Then, an indirect heat exchanger was considered for the simulation, assuming aluminum capsules to confine the PCM, thus obtaining the maximum possible heat exchange surface and air at 5 bar as heat transfer fluid (HTF). The modelling was carried out setting the inlet and outlet air temperatures at, respectively, 290 °C and 550 °C, obtaining a realistic storage efficiency of around 0.6. Finally, a conservative investment cost was estimated for the storage system, demonstrating a real possible economic benefit in using these types of materials and heat exchange geometries, with the results varying, according to possible manufacturing prices, in a range from 25 to 40 EUR/kWh.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Sau, S; Corsaro, N; Crescenzi, T; Liberatore, R; Russo, V; Tarquini, P; Tizzoni, A.; D'OTTAVI, CADIA; LICOCCIA, SILVIA;handle: 2108/140714
Abstract The employment of parabolic trough solar power plants (PT-CSP) for electrical power and process heat generation is one of the most promising technologies for carbon free energy production. The selection of thermal fluids, both for the heat transfer (heat transfer fluid, HTF) and the storage (heat storage material, HSM), is a crucial point for increasing CSP efficiency and cost effectiveness. In this paper two different PT-CSP configurations, both presenting a double tanks storage system, are compared. In particular, two different medium size (50 MWe) plant schemes, presenting two different working fluids as HTF, are described and analysed. In the first scheme a “binary” molten salt mixture, composed of sodium and potassium nitrate, is considered, while, in the second one, the employment, as HTF, of a “ternary” mixture, consisting of sodium potassium and lithium nitrates, is investigated. In both cases, the binary mixture is used for thermal storage (HSM). The first scheme represents the configuration developed by ENEA and already used for the Archimede plant in Priolo Gargallo (Sicily-Italy). The second one is an innovative proposal, which aims to improve CSP plants performances and to reduce operating costs. In particular, since the ternary mixture has a considerably lower freezing temperature than the binary one, this solution allows to keep the system at a lower temperature overnight, so reducing thermal energy losses. In first instance, it is necessary to characterize the binary and ternary mixtures respect to their thermo-physical features. The two CSP configurations are then sized and, by a techno/economic evaluation, compared with respect to the calculated unit cost of electricity production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV Authors: Miliozzi, A.; Liberatore, R.; Crescenzi, T.; Veca, E.;handle: 20.500.12079/5762
AbstractThermal energy storage is a key factor for efficiency, dispatchability and economic sustainability of concentrated solar plants. The latent heat storage systems could ensure a significant reduction in construction costs and environmental impact, because of its high storage energy density. In LHTES, the heat transfer between the heat transfer fluid and the storage system is strongly limited by the reduced thermal conductivity of the storage media. For operating temperatures between 200 and 600°C, the most used storage media are salts. In order to evaluate solutions which promote the thermal conductivity, by increasing the exchange surface and/or the addition of nanoparticles to the storage media, Enea set up a small facility to test some storage concepts. In this facility, a diathermic oil flows through three elementary “shell-and-tube” storage systems, connected in series, reaching a maximum temperature of about 280°C. The elementary storage systems are filled with a mixture of sodium and potassium nitrates salts, which melt at about 225°C. Moreover a small percentage of alumina and silica nanoparticles were added to this mixture. The results of the experiments show an increase of the thermal diffusivity of the medium not only for the presence of fins on the heat transfer tubes but also because of convective flows within the melted fraction were established. These phenomena strongly reduce the charging times of the system (by about 30%). Instead, the presence of nanoparticles increases the thermal capacity and the thermal conductivity of the storage system but seems not to have a relevant effect on the thermal diffusivity of the mixture. This behavior depends on the type of used nanoparticles, which can significantly change over time some characteristics of the storage medium, in which they are dispersed, leaving other characteristics unchanged, according to mechanisms which are still to be well understood.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Giannuzzi, Giuseppe M.; Liberatore, Raffaele; Mele, Domenico; Mazzucco, Gianluca; +4 AuthorsGiannuzzi, Giuseppe M.; Liberatore, Raffaele; Mele, Domenico; Mazzucco, Gianluca; Xotta, Giovanna; Salomoni, Valentina A.; Maiorana, Carmelo; Di Maggio, Rosa;handle: 11572/200091 , 11577/3257142
Abstract A three-stage study on the behaviour of storage plants employing concrete with upgraded thermo-mechanical characteristics is here developed. The first stage defines the experimental campaign on a mixing at improved conductivity, via the SolTeCa experimental system, with review of the storage elements geometry, location of thermocouples and cycling procedures. The experimental results, obtained by ENEA via a comparison with appropriately performed numerical calculations, are interpreted during the second stage. Finally, a first design of a new equipment for the thermal cycling of storage elements up to 400 °C is proposed, based on Joule-effect heating. The numerical results are reported, in order to understand the thermal dynamics as well as the induced thermo-mechanical effects on concrete elements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Lanchi M.; Turchetti L.; Sau S.; Liberatore R.; Cerbelli S.; Murmura M. A.; Annesini M. C.;doi: 10.3390/en13184940
handle: 11573/1444795
One of the most interesting perspectives for the development of concentrated solar power (CSP) is the storage of solar energy on a seasonal basis, intending to exploit the summer solar radiation in excess and use it in the winter months, thus stabilizing the yearly production and increasing the capacity factor of the plant. By using materials subject to reversible chemical reactions, and thus storing the thermal energy in the form of chemical energy, thermochemical storage systems can potentially serve to this purpose. The present work focuses on the identification of possible integration solutions between CSP plants and thermochemical systems for long-term energy storage, particularly for high-temperature systems such as central receiver plants. The analysis is restricted to storage systems potentially compatible with temperatures ranging from 700 to 1000 °C and using gases as heat transfer fluids. On the basis of the solar plant specifications, suitable reactive systems are identified and the process interfaces for the integration of solar plant/storage system/power block are discussed. The main operating conditions of the storage unit are defined for each considered case through process simulation.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4940/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1444795/1/Lanchi_discussion-possible-approaches_2020.pdfData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4940/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1444795/1/Lanchi_discussion-possible-approaches_2020.pdfData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 GermanyPublisher:Inderscience Publishers Galzim, O.; Mansilla, C.; Giaconia, A.; Poitou, S.; Hinkley, J.; Ebbesen, S.; Gasik, M.; Gilardi,, T.; Le Naour, F.; Robin, J.-C.; Graf, Daniela; Roeb, Martin; Sattler, Christian; Liberatore, R.; Tarquini, P.; Moliner, R.; Suelves,, I.; Gstoehl, D.; Vogt, U.; Allen, R.W.K.; Kolb, G.J.;Hydrogen demand has already significantly increased due to the industry needs. Mature technologies based on fossil fuels are not satisfactory due to greenhouse gas concerns. In response, a range of advanced processes are being developed throughout the world. Within the ‘International Energy Agency – Hydrogen Implementing Agreement – Task 25’, a multicriteria methodology was developed for the evaluation of high temperature hydrogen production processes. The aim is to guide R&D strategy by highlighting to which extent the processes may appear promising. The method that was developed is based on the elimination and choice translating the reality (ELECTRE). This study has conducted a first pass application to hydrogen production and highlights the importance of significant weightings and discriminating criteria. Decision makers can apply this method to extract their own subset of processes from the alternatives, according to their system of values defined through the selection of criteria and the associated weights.
International Journa... arrow_drop_down International Journal of Multicriteria Decision MakingArticle . 2011 . Peer-reviewedData sources: CrossrefInternational Journal of Multicriteria Decision MakingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ijmcdm.2011.039586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Multicriteria Decision MakingArticle . 2011 . Peer-reviewedData sources: CrossrefInternational Journal of Multicriteria Decision MakingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ijmcdm.2011.039586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Alberto Giaconia; Michela Lanchi; Pietro Tarquini; Raffaele Liberatore;Abstract The faster and faster global growth of energy consumption generates serious problems on its supply and about the pollution that may result. Through the use of thermochemical cycles it is possible to use renewable energy to produce hydrogen from water, with the dual purpose of having an unlimited source of energy without producing greenhouse gases. This paper provides an energy assessment and a preliminary design of an industrial plant for the production of 100 tons/day of hydrogen by sulfur-iodine thermochemical cycle. Afterwards, an economic analysis is performed to assess the hydrogen production cost, with the assumption to power the process by solar energy. For this purpose, a double solar facility is sized: a parabolic trough plant, for the mean temperature duties, and a central receiver tower one for the higher temperature duties. The efficiency of the thermochemical cycle by itself is about 34%. If this value is associated with the electrical energy production, including the efficiency of the solar plants, the total heat-to-hydrogen efficiency of 21% is obtained, with a hydrogen production cost of about 8.3 €/kg.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.03.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.03.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Gallucci F.; Liberatore R.; Sapegno L.; Volponi E.; Venturini P.; Rispoli F.; Paris E.; Carnevale M.; Colantoni A.;doi: 10.3390/en13010102
handle: 11573/1440995
This work aims to study the influence of an oxidant agent on syngas quality. A series of tests using air and steam as oxidant agents have been performed and the results compared with those of a pyrolysis test used as a reference. Tests were carried out at Sapienza University of Rome, using an updraft reactor. The reactor was fed with hazelnut shells, waste biomass commonly available in some parts of Italy. Temperature distribution, syngas composition and heating value, and producible energy were measured. Air and steam gasification tests produced about the same amount of syngas flow, but with a different quality. The energy flow in air gasification had the smallest measurement during the experiments. On the contrary, steam gasification produced a syngas flow with higher quality (13.1 MJ/Nm3), leading to the best values of energy flow (about 5.4 MJ/s vs. 3.3 MJ/s in the case of air gasification). From the cold gas efficiency point of view, steam gasification is still the best solution, even considering the effect of the enthalpy associated with the steam injected within the gasification reactor.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/102/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/102/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu