- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Axel A. Mendoza-Armenta; Luis C. Félix-Herrán; Bartolomeo Silvestri; Andrea C. Valderrama-Solano; +3 AuthorsAxel A. Mendoza-Armenta; Luis C. Félix-Herrán; Bartolomeo Silvestri; Andrea C. Valderrama-Solano; Juan C. Tudon-Martínez; Michele Roccotelli; Jorge de J. Lozoya-Santos;doi: 10.3390/en17215399
The deployment of electric, connected, and autonomous vehicles on public roads presents a significant challenge that can be addressed through previously established frameworks developed globally for implementing these technologies as part of an urban living lab (ULL). This systematic review, based on records from four distinct databases, focuses on projects that have conducted deployments of self-driving technologies in streets within urban environments. The review describes relevant information about various initiatives, including a classification of the stages of development reached according to the urban area covered, safety considerations, and lessons learned for optimal deployment. On-board sensing technology, digital infrastructure, and energy and communication systems emerge as the essential components of a ULL with autonomous vehicles (AVs). A crucial goal for smart cities is ensuring the scalability of large-scale deployments of such ULLs for safe, clean, and future mobility experimentation. This can only be achieved through effective coordination among academia, government, industry, and society to guarantee the successful integration of multiple projects in a unique environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Julio C. Montaño-Moreno; Guillermo Quiroga-Ocaña; José R. Noriega; Luis C. Félix-Herrán; +3 AuthorsJulio C. Montaño-Moreno; Guillermo Quiroga-Ocaña; José R. Noriega; Luis C. Félix-Herrán; Rodolfo Granados-Monge; Victor H. Benitez; Jorge de-J. Lozoya-Santos;doi: 10.3390/en17174239
This research proposes the utilization of Peltier modules to convert electrical energy from thermal energy to show its potential as a renewable energy source for residential and commercial application. The study, whose results are presented in this manuscript, was conducted in the city of Monterrey, located in the northeast of Mexico. The energy source was tested and analyzed utilizing a set of statistical metrics and further comparison against experimental test results. The Distrito Tec area in Monterrey city is an academic complex and it was chosen for this study, which consisted of the indirect measurement of the average annual heat energy stored within the buildings’ cement structure. The aim was to obtain the annual accumulated electrical power in Wh per year that Peltier modules could provide in Distrito Tec, which is located in a city with solar irradiation levels above the world average. The proposal in this paper could encourage further investigation regarding this energy that is currently waste heat. More specifically, the results of this research highlight the importance of thermoelectric modules and seek to motivate research to improve their properties and make them more efficient and more viable as well. Thermoelectric modules have the potential to be part of the solution to sustainable development as presented in the United Nations SDG-7—ensure access to affordable, reliable, sustainable and modern energy for all.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Fausto André Valenzuela-Domínguez; Luis Alfonso Santa Cruz; Enrique A. Enríquez-Velásquez; Luis C. Félix-Herrán; +3 AuthorsFausto André Valenzuela-Domínguez; Luis Alfonso Santa Cruz; Enrique A. Enríquez-Velásquez; Luis C. Félix-Herrán; Victor H. Benitez; Jorge de-J. Lozoya-Santos; Ricardo A. Ramírez-Mendoza;doi: 10.3390/en14196427
The estimation of the solar resource on certain surfaces of the planet is a key factor in deciding where to establish solar energy collection systems. This research uses a mathematical model based on easy-access geographic and meteorological information to calculate total solar radiation at ground surface. This information is used to create a GIS analysis of the State of Nuevo León in Mexico and identify solar energy opportunities in the territory. The analyzed area was divided into a grid and the coordinates of each corner are used to feed the mathematical model. The obtained results were validated with statistical analyses and satellite-based estimations from the National Aeronautics and Space Administration (NASA). The applied approach and the results may be replicated to estimate solar radiation in other regions of the planet without requiring readings from on-site meteorological stations and therefore reducing the cost of decision-making regarding where to place the solar energy collection equipment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Guillermo Quiroga-Ocaña; Julio C. Montaño-Moreno; Enrique A. Enríquez-Velásquez; Victor H. Benitez; +3 AuthorsGuillermo Quiroga-Ocaña; Julio C. Montaño-Moreno; Enrique A. Enríquez-Velásquez; Victor H. Benitez; Luis C. Félix-Herrán; Jorge de-J. Lozoya-Santos; Ricardo A. Ramírez-Mendoza;doi: 10.3390/en14206441
This paper proposes the computation and assessment of optimal tilt and azimuth angles for a receiving surface, using a mathematical model developed at the University of Tomsk, Russia. The model was validated and analyzed for the Nuevo León State, Northeast Mexico, utilizing a set of metrics, comparing against satellite data from NASA. A point of interest in the city of Monterrey was analyzed to identify orientation patterns throughout the year for an optimal solar energy gathering. The aim is providing the best orientation tilt angles for photovoltaic or solar thermal panels without tracking systems. In addition, this analysis is proposed as a tool to achieve optimal performance in sustainable urban development in the region. Based on the findings, a set of optimal tilt and azimuth surface angles are proposed for the analyzed coordinates. The aim is to identify the optimal performance to obtain the maximum solar irradiation possible over the year for solar projects in the region. The results show that the model can be used as a tool to accelerate decision making in the design of solar harvesting surfaces and allows the design of discrete tracking systems with an increase in solar energy harvesting above 5% annually.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Luis C. Félix-Herrán; Alejandro García-Juárez; Luis Arturo García-Delgado; Pablo Said González-Aguayo; +2 AuthorsLuis C. Félix-Herrán; Alejandro García-Juárez; Luis Arturo García-Delgado; Pablo Said González-Aguayo; Jorge de-J. Lozoya-Santos; José R. Noriega;The present work describes the implementation of a prototype to characterize thermoelectric modules (TEM). The goal is to study the energy conversion by means of thermoelectric modules mounted on concrete structures. The proposed experimental system is used for the electrical characterization of a commercially available thermoelectric module TEC1-12710 to prove its operation while embedded in a concrete slab, typical of building constructions. In this case, the parameters that define thermal energy conversion into electrical energy are open-circuit voltage generation, loaded circuit voltage generation, and load current. A known external load is connected to the terminals of the TEM for the purpose of its electric characterization. An electrical heating element on the hot side and a thermoelectric cooler on the cold side produce a temperature difference on the concrete slab. This arrangement allows the emulation of a temperature gradient produced by sunlight over a concrete structure. The objective is to measure the resulting electrical energy produced by the combination of concrete slab and the thermoelectric module. By controlling the temperature difference between the sides of the thermoelectric module under test, it is possible to simulate the effect of the temperature gradient under different sunlight conditions. Two digital PI controllers regulate the temperature conditions, thus providing controlled conditions for the experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22051881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22051881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Axel A. Mendoza-Armenta; Luis C. Félix-Herrán; Bartolomeo Silvestri; Andrea C. Valderrama-Solano; +3 AuthorsAxel A. Mendoza-Armenta; Luis C. Félix-Herrán; Bartolomeo Silvestri; Andrea C. Valderrama-Solano; Juan C. Tudon-Martínez; Michele Roccotelli; Jorge de J. Lozoya-Santos;doi: 10.3390/en17215399
The deployment of electric, connected, and autonomous vehicles on public roads presents a significant challenge that can be addressed through previously established frameworks developed globally for implementing these technologies as part of an urban living lab (ULL). This systematic review, based on records from four distinct databases, focuses on projects that have conducted deployments of self-driving technologies in streets within urban environments. The review describes relevant information about various initiatives, including a classification of the stages of development reached according to the urban area covered, safety considerations, and lessons learned for optimal deployment. On-board sensing technology, digital infrastructure, and energy and communication systems emerge as the essential components of a ULL with autonomous vehicles (AVs). A crucial goal for smart cities is ensuring the scalability of large-scale deployments of such ULLs for safe, clean, and future mobility experimentation. This can only be achieved through effective coordination among academia, government, industry, and society to guarantee the successful integration of multiple projects in a unique environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17215399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Julio C. Montaño-Moreno; Guillermo Quiroga-Ocaña; José R. Noriega; Luis C. Félix-Herrán; +3 AuthorsJulio C. Montaño-Moreno; Guillermo Quiroga-Ocaña; José R. Noriega; Luis C. Félix-Herrán; Rodolfo Granados-Monge; Victor H. Benitez; Jorge de-J. Lozoya-Santos;doi: 10.3390/en17174239
This research proposes the utilization of Peltier modules to convert electrical energy from thermal energy to show its potential as a renewable energy source for residential and commercial application. The study, whose results are presented in this manuscript, was conducted in the city of Monterrey, located in the northeast of Mexico. The energy source was tested and analyzed utilizing a set of statistical metrics and further comparison against experimental test results. The Distrito Tec area in Monterrey city is an academic complex and it was chosen for this study, which consisted of the indirect measurement of the average annual heat energy stored within the buildings’ cement structure. The aim was to obtain the annual accumulated electrical power in Wh per year that Peltier modules could provide in Distrito Tec, which is located in a city with solar irradiation levels above the world average. The proposal in this paper could encourage further investigation regarding this energy that is currently waste heat. More specifically, the results of this research highlight the importance of thermoelectric modules and seek to motivate research to improve their properties and make them more efficient and more viable as well. Thermoelectric modules have the potential to be part of the solution to sustainable development as presented in the United Nations SDG-7—ensure access to affordable, reliable, sustainable and modern energy for all.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Fausto André Valenzuela-Domínguez; Luis Alfonso Santa Cruz; Enrique A. Enríquez-Velásquez; Luis C. Félix-Herrán; +3 AuthorsFausto André Valenzuela-Domínguez; Luis Alfonso Santa Cruz; Enrique A. Enríquez-Velásquez; Luis C. Félix-Herrán; Victor H. Benitez; Jorge de-J. Lozoya-Santos; Ricardo A. Ramírez-Mendoza;doi: 10.3390/en14196427
The estimation of the solar resource on certain surfaces of the planet is a key factor in deciding where to establish solar energy collection systems. This research uses a mathematical model based on easy-access geographic and meteorological information to calculate total solar radiation at ground surface. This information is used to create a GIS analysis of the State of Nuevo León in Mexico and identify solar energy opportunities in the territory. The analyzed area was divided into a grid and the coordinates of each corner are used to feed the mathematical model. The obtained results were validated with statistical analyses and satellite-based estimations from the National Aeronautics and Space Administration (NASA). The applied approach and the results may be replicated to estimate solar radiation in other regions of the planet without requiring readings from on-site meteorological stations and therefore reducing the cost of decision-making regarding where to place the solar energy collection equipment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Guillermo Quiroga-Ocaña; Julio C. Montaño-Moreno; Enrique A. Enríquez-Velásquez; Victor H. Benitez; +3 AuthorsGuillermo Quiroga-Ocaña; Julio C. Montaño-Moreno; Enrique A. Enríquez-Velásquez; Victor H. Benitez; Luis C. Félix-Herrán; Jorge de-J. Lozoya-Santos; Ricardo A. Ramírez-Mendoza;doi: 10.3390/en14206441
This paper proposes the computation and assessment of optimal tilt and azimuth angles for a receiving surface, using a mathematical model developed at the University of Tomsk, Russia. The model was validated and analyzed for the Nuevo León State, Northeast Mexico, utilizing a set of metrics, comparing against satellite data from NASA. A point of interest in the city of Monterrey was analyzed to identify orientation patterns throughout the year for an optimal solar energy gathering. The aim is providing the best orientation tilt angles for photovoltaic or solar thermal panels without tracking systems. In addition, this analysis is proposed as a tool to achieve optimal performance in sustainable urban development in the region. Based on the findings, a set of optimal tilt and azimuth surface angles are proposed for the analyzed coordinates. The aim is to identify the optimal performance to obtain the maximum solar irradiation possible over the year for solar projects in the region. The results show that the model can be used as a tool to accelerate decision making in the design of solar harvesting surfaces and allows the design of discrete tracking systems with an increase in solar energy harvesting above 5% annually.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Luis C. Félix-Herrán; Alejandro García-Juárez; Luis Arturo García-Delgado; Pablo Said González-Aguayo; +2 AuthorsLuis C. Félix-Herrán; Alejandro García-Juárez; Luis Arturo García-Delgado; Pablo Said González-Aguayo; Jorge de-J. Lozoya-Santos; José R. Noriega;The present work describes the implementation of a prototype to characterize thermoelectric modules (TEM). The goal is to study the energy conversion by means of thermoelectric modules mounted on concrete structures. The proposed experimental system is used for the electrical characterization of a commercially available thermoelectric module TEC1-12710 to prove its operation while embedded in a concrete slab, typical of building constructions. In this case, the parameters that define thermal energy conversion into electrical energy are open-circuit voltage generation, loaded circuit voltage generation, and load current. A known external load is connected to the terminals of the TEM for the purpose of its electric characterization. An electrical heating element on the hot side and a thermoelectric cooler on the cold side produce a temperature difference on the concrete slab. This arrangement allows the emulation of a temperature gradient produced by sunlight over a concrete structure. The objective is to measure the resulting electrical energy produced by the combination of concrete slab and the thermoelectric module. By controlling the temperature difference between the sides of the thermoelectric module under test, it is possible to simulate the effect of the temperature gradient under different sunlight conditions. Two digital PI controllers regulate the temperature conditions, thus providing controlled conditions for the experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22051881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22051881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu