- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:SAE International TESTA, FRANCESCO; Gagliardi, Vincenzo; Ferrari, Marco; FONTANESI, Stefano; Bertani, Andrea;doi: 10.4271/2016-32-0050
handle: 11380/1114636
It is well known that 3D CFD simulations can give detailed information about fluid and flow properties in complex 3D domains while 1D CFD simulation can provide important information at a system level, i.e. about the performance of the entire engine. The drawbacks of the two simulation methods are that the former requires high computational cost while the latter is not able to capture complex local 3D features of the flow. Therefore, the two simulation methods are to be seen as complementary, indeed a coupling of the two approaches can benefit from the pros of the two methods while minimizing the cons. In particular, with a multi-scale modeling approach (1D-3D) it is possible to simulate large and complex domains by modeling the complex part with a 3D approach and the rest of the domain with a 1D approach. This paper describes an optimization cycle analysis of the unsteady flow of a single cylinder, two stroke gasoline engine using advanced numerical tools, which are in turn validated by means of experimental measurements. In particular, a 3D model (based on STAR-CD code) of the entire engine and a 1D-3D integrated fluid dynamics model (based on GT-POWER 1D and Converge-LITE 3D codes) is developed and applied for the representation of the geometrical domain and for the prediction of performance and gasdynamics in the whole intake and exhaust systems. The methodology allows users to accurately predict and deeply understand unsteady phenomena in the whole engine and capture the wave motion, which strongly affects the muffler 3D design in small two stroke engines equipped with resonance pipes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-32-0050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 98visibility views 98 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-32-0050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2014 ItalyPublisher:Elsevier BV Authors: DE BELLIS, VINCENZO; Severi E.; Fontanesi S.; BOZZA, FABIO;handle: 11588/877402 , 11588/571859 , 11380/1019517
AbstractAs discussed in the part I of this paper, 3D models represent a useful tool for a detailed description of the mean and turbulent flow fields inside the engine cylinder. 3D results are utilized to develop and validate a 0D phenomenological turbulence model, sensitive to the variation of operative parameters such as valve phasing, valve lift, engine speed, etc.In part II of this paper, a 0D phenomenological combustion model is presented, as well. It is based on a fractal description of the flame front and is able to sense each of the fuel properties, the operating conditions (air-to-fuel ratio, spark advance, boost level) and the combustion chamber geometry. In addition, it is capable to properly handle different turbulence levels predicted by means of the turbulence model presented in the part I.The turbulence and combustion models are included, through user routines, in the commercial software GT-Power™. With reference to a small twin-cylinder VVA turbocharged engine, the turbulence/combustion model, once properly tuned, is finally used to calculate in-cylinder pressure traces, rate of heat release and overall engine performance at full load operations and brake specific fuel consumption at part load, as well. An excellent agreement between numerical forecasts and experimental evidence is obtained.
IRIS UNIMORE - Archi... arrow_drop_down IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaConference object . 2014License: CC BY NC NDArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014License: CC 0Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 96 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaConference object . 2014License: CC BY NC NDArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014License: CC 0Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:SAE International Authors: D'Adamo, Alessandro; Breda, Sebastiano; Berni, Fabio; Fontanesi, Stefano;handle: 11380/1171574
A numerical study using large-eddy simulations (LES) to reproduce and understand sources of cycle-to-cycle variation (CCV) in spark-initiated internal combustion engines (ICEs) is presented. Two relevantly different spark-ignition (SI) units, that is, a homogeneous-charge slow-speed singlecylinder research unit (the transparent combustion chamber (TCC)-III, Engine 1) and a stratifiedcharge high-revving speed gasoline direct injection (GDI) (Engine 2) one, are analyzed in fired operations. Multiple-cycle simulations are carried out for both engines and LES results well reproduce the experimentally measured combustion CCV. A correlation study is carried out, emphasizing the decisive influence of the early flame period variability (1% of mass fraction burnt (MFB1)) on the entire combustion event in both ICEs. The focus is moved onto the early flame characteristics, and the crucial task to determine the dominant causes of its variability (if any) is undertaken. A two-level analysis is carried out: the influence of global parameters is assessed at first; second, local details in the ignition region are analyzed. A comparison of conditions at combustion onset is carried out and case-specific leading factors for combustion CCV are identified and ranked. Finally, comparative simulations are presented using a simpler flame deposition ignition model: the simulation flaws are evident due to modeling assumptions in the flame/flow interaction at ignition. The relevance of this study is the knowledge extension of turbulence-driven phenomena in ICEs allowed by advanced CFD (Computational Fluid Dynamics) simulations. The application to different engine types proves the soundness of the used models and it confirms that CCV is based on enginespecific factors. Simulations show how CCV originates from the interplay of small- and large-scale factors in Engine 1, due to the lack of coherent flows, whereas in Engine 2 the dominant CCV promoters are local air-to-fuel ratio (AFR) and flow velocity at ignition. This confirms the absence of a generally valid ranking, and it demonstrates the use of LES as a development and designorienting tool for next-generation engines.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/03-12-01-0007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 94visibility views 94 download downloads 56 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/03-12-01-0007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV Authors: Rinaldini, Carlo Alberto; Breda, Sebastiano; Fontanesi, Stefano; Savioli, Tommaso;handle: 11380/1148035
AbstractOne of the most critical challenges for the specific power increase of turbocharged SI engines is the low end torque, limited by two aspects. First, the big size of the compressor necessary to deliver the maximum airflow does not allow high boost pressures at low speed, due to the surge line proximity. Second, the flame front velocity may become slower than the end gas auto-ignition rate, thus increasing the risk of knocking.This study is based on a current SI GDI V8 turbocharged engine, modeled by means of CFD tools, both 1d and 3d. The goal of the activity is to lower by 20% the displacement, without reducing brake torque, all over the engine speed range.It was decided to adopt a smaller bore, keeping stroke constant. Obviously, the combustion chamber, the valves and the intake-exhaust ports have been re-designed, as well as the whole intake and exhaust system. Instead of the two turbochargers, one for each bank of cylinders, a triple-turbocharger layout has been considered.The development of the engine has been carried out by means of 1D engine cycle simulations, using predictive knock models, calibrated with the support of both experiments and CFD-3d simulations. A few operating conditions for the final configuration have been also analyzed by means of a 3-d CFD tool.The paper presents the results of this activity, and describes in details the guidelines followed for the development of the engine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 149visibility views 149 download downloads 177 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV D'ADAMO, Alessandro; BREDA, SEBASTIANO; FONTANESI, Stefano; Irimescu, Adrian; Merola, Simona Silvia; Tornatore, Cinzia;handle: 20.500.14243/358143 , 11380/1135293
In the recent past engine knock emerged as one of the main limiting aspects for the achievement of higher efficiency targets in modern spark-ignition (SI) engines. To attain these requirements, engine operating points must be moved as close as possible to the onset of abnormal combustions, although the turbulent nature of flow field and SI combustion leads to possibly ample fluctuations between consecutive engine cycles. This forces engine designers to distance the target condition from its theoretical optimum in order to prevent abnormal combustion, which can potentially damage engine components because of few individual heavy-knocking cycles. A statistically based RANS knock model is presented in this study, whose aim is the prediction not only of the ensemble average knock occurrence, poorly meaningful in such a stochastic event, but also of a knock probability. The model is based on look-up tables of autoignition times from detailed chemistry, coupled with transport equations for the variance of mixture fraction and enthalpy. The transported perturbations around the ensemble average value are based on variable gradients and on a local turbulent time scale. A multi-variate cell-based Gaussian-PDF model is proposed for the unburnt mixture, resulting in a statistical distribution for the in-cell reaction rate. An average knock precursor and its variance are independently calculated and transported; this results in the prediction of an earliest knock probability preceding the ensemble average knock onset, as confirmed by the experimental evidence. The proposed model estimates not only the regions where the average knock is promoted, but also where and when the first knock is more likely to be encountered. The application of the model to a RANS simulation of a modern turbocharged direct injection (DI) SI engine with optical access is presented and the analysis of the knock statistical occurrence obtained by the proposed model adds an innovative contribution to overcome the limitation of consolidated "average knock" analyses typical of a RANS approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.01.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 147visibility views 147 download downloads 64 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.01.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Journal , Article 2003 ItalyPublisher:SAE International Authors: BIANCHI, GIAN MARCO; Fontanesi S.;doi: 10.4271/2003-01-0003
handle: 11380/608881 , 11585/127088
The evaluation of the steady-flow discharge coefficient of ICE port assemble is known to be very sensitive to the capability of the turbulence sub-models in capturing the boundary layer dynamics. Despite the fact that theintrinsically unsteady phenomena related to flow separation claim for LES approach, the present paper aims to demonstrate that RANS simulation can provide reliable design-oriented results by using low-Reynolds cubic k-e turbulence models. Different engine intake port assemblies and pressure drops have been simulated by using the CFD STAR-CD code and numerical results have been compared versus experiments in terms of both global parameters, i.e. the discharge coefficient, and local parameters, by means of static pressure measurements along the intake port just upstream of the valve seat. Computations have been performed by comparing two turbulence models: Low-Reynolds cubic k-e and High-Reynolds cubic k-e. The analysis leaded to remarkable assessments in the definition of a correct and reliable methodology for the evaluation of engine port breathing capabilities. Comparison between numerical results and experiments showed that the low-Reynolds cubic k-e model is unavoidable to correctly capture the influence of port feature variations on engine permeability. In particular, the deficiencies demonstrated by High-Reynolds cubic k-e turbulence model in resolving the influence of near-wall shear and adverse pressure gradient effect on boundary layer dynamics are completely overcome by the use of the Low-Reynolds formulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2003-01-0003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 75visibility views 75 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2003-01-0003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2011 ItalyPublisher:SAE International Authors: FONTANESI, Stefano; CICALESE, Giuseppe; D'ADAMO, Alessandro; G. Pivetti;doi: 10.4271/2011-24-0132
handle: 11380/703802
The paper presents a combined experimental and numerical activity carried out to improve the accuracy of conjugate heat transfer CFD simulations of a high-performance S.I. engine water cooling jacket.Due to the complexity of the computational domain, which covers both the coolant jacket and the surrounding metal cast (both head and block), particular care is required in order to find a tradeoff between the accuracy and the cost-effectiveness of the numerical procedure. In view of the presence of many complex physical phenomena, the contribution of some relevant CFD parameters and sub-models is separately evaluated and discussed.Among the formers, the extent of the computational domain, the choice of a proper set of boundary conditions and the detailed representation of the physical properties of the involved materials are separately considered. Among the latters, the choice between a simplified single-phase approach and a more complex two-phase approach taking into account the effects of phase transition within the engine coolant is discussed.The predictive capability of the CFD-CHT methodology is assessed by means of the comparison between CFD results and experimental measurements provided by the engine manufacturer for different engine operating conditions.At the end of the validation process, a methodology for the correct and cost-effective characterization of conjugate heat transfer is proposed, showing a reasonable trade-off between the predictive capability and the computational effort of the simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2011-24-0132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 74visibility views 74 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2011-24-0132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 ItalyPublisher:SAE International Rosetti A.; Iotti C.; Bedogni A.; Cantore G.; Fontanesi S.; Berni F.;doi: 10.4271/2019-24-0006
handle: 11380/1200169
The paper aims at defining a methodology for the prediction and understanding of knock tendency in internal combustion engine piston crevices by means of CFD simulations. The motivation for the analysis comes from a real design requirement which appeared during the development of a new high performance SI unit: It is in fact widely known that, in high performance engines (especially the turbocharged ones), the high values of pressure and temperature inside the combustion chamber during the engine cycle may cause knocking phenomena. "Standard" knock can be easily recognized by direct observation of the in-cylinder measured pressure trace; it is then possible to undertake proper actions and implement design and control improvements to prevent it with relatively standard 3D-CFD analyses. Some unusual types of detonation may occur somewhere else in the combustion chamber: Knocking inside piston/liner crevices belongs to the latter category and damages on the piston top land (very similar to pitting) are one of the evidence of knock onset in this region. The very localized regions of damage onset, the cycle to cycle variability and the very short duration of the phenomena do not allow to obtain fully reliable experimental data concerning the investigated problem. A new methodology is therefore implemented in CFD to drive the root causes identification and understanding the impact of crevice design. A preliminary CFD 3D in-cylinder analysis is performed, in order to understand the criticalities in the piston to liner fireland due to local pressure and temperature temporal evolution. Then a "model reduction" is proposed, which is necessary in order to study the problem with reasonable computational costs and times. A 2D simplified model is developed which is able to maintain the possibility to correctly represent the local thermo fluid dynamic effects, especially the auto-ignition conditions. Finally, new geometries are studied in order to prevent local knocking and retard auto-ignition such to improve the KLSA.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 110visibility views 110 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Berni F.; Cicalese G.; Borghi M.; Fontanesi S.;handle: 11380/1239812
Abstract Convective heat transfer heavily affects both efficiency and reliability in many industrial problems. For this reason, its proper estimation is mandatory since the early design stage. 3D-CFD simulations represent a powerful tool for the prediction of the heat fluxes. This is even more true considering that typical operating conditions of many applications prevent experimental characterization. As for 3D-CFD computations, the combination of Reynolds Averaged Navier Stokes (RANS) turbulence modeling and high-Reynolds wall treatment is still widely diffused in the industrial practice, to save both computational cost and time. The adoption of a high-Reynolds wall treatment based on wall functions, which permits the use of relatively coarse near-wall grids, implies specific restrictions for the height of the near-wall cell layer. In particular, the first cell-centroid must be placed in the fully turbulent (log-) region of the boundary layer. The main drawback of a cell-centroid falling into the viscous sub-layer consists in a huge overestimation of both wall shear stress and wall heat transfer. The lower the y + is (i.e. the lower the wall distance is), the higher the predicted values are. As for many other industrial applications, Internal Combustion Engine (ICE) in-cylinder simulations remarkably suffer from the presence of low y + values in the computational domain, mostly at part-loads and low-revving speeds. At specific operating points, such as idle conditions, it is nearly impossible to maintain y + in the log-region, even during the compression stroke, when the velocity field should allow the dimensionless distance to reach the highest values in the engine cycle. To avoid such undesired overestimations of shear stress and heat transfer, a modified formulation of the thermal law of the wall ( T + ) to be used in the viscous sub-layer is proposed in the present paper. To further reduce the grid-dependency of the high-Reynolds wall treatment, a similar modification is applied to the velocity wall function ( u + ). Resulting wall heat flux and wall shear stress are shown to be grid-independent, at least for y + > 3 . The proposed alternative modeling for u + inside the viscous sub-layer is validated in terms of flow field against experimental Laser-Doppler Anemometry (LDA) data and Direct Numerical Simulation (DNS) results. Despite the present analysis focuses on in-cylinder simulations, the alternative u + and T + formulations can be applied to any complex flow. Furthermore, the proposed modified laws of the wall can be adopted in conjunction with any wall-function-based heat transfer model.
IRIS UNIMORE - Archi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 103visibility views 103 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Giuseppe Corda; Stefano Fontanesi; Alessandro d'Adamo;handle: 11380/1274590
In this paper, a three-dimensional, multi-physics and multi-phase CFD model is presented and validated on straight single-channel configurations to analyse the influence of the channel/rib width ratio. In the first part, two cases with wide/narrow channel/rib spacing are reproduced from a literature campaign including neutron radiography (NRG) measured water distribution, which is well reproduced in simulations thanks to the novel implementation of an in-house developed macro-homogeneous catalyst layer sub-model. In the second part, the inclusion of an adapted compression model from literature allows to investigate in detail the effect that the deformation of the porous parts (diffusion media and catalyst layers) has on the cell performance, considering two levels of compression (i.e. clamping pressure). All transport properties (flow/energy/charge) are locally modified as a function of the inhomogeneous compression acted by the BPPs, e.g. influencing flow permeability and thermo/electrical conductivity. The obtained numerical results are compared against those from the undeformed geometry, highlighting a relevant operational difference and explaining it as a compression-related oxygen starvation. The study presents a comprehensive model for PEMFC simulation, including an efficient catalyst layer model and demonstrating the relevance of including the often-neglected compression effect on full-scale cell (or stack) models.
IRIS UNIMORE - Archi... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.02.201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 124visibility views 124 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.02.201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:SAE International TESTA, FRANCESCO; Gagliardi, Vincenzo; Ferrari, Marco; FONTANESI, Stefano; Bertani, Andrea;doi: 10.4271/2016-32-0050
handle: 11380/1114636
It is well known that 3D CFD simulations can give detailed information about fluid and flow properties in complex 3D domains while 1D CFD simulation can provide important information at a system level, i.e. about the performance of the entire engine. The drawbacks of the two simulation methods are that the former requires high computational cost while the latter is not able to capture complex local 3D features of the flow. Therefore, the two simulation methods are to be seen as complementary, indeed a coupling of the two approaches can benefit from the pros of the two methods while minimizing the cons. In particular, with a multi-scale modeling approach (1D-3D) it is possible to simulate large and complex domains by modeling the complex part with a 3D approach and the rest of the domain with a 1D approach. This paper describes an optimization cycle analysis of the unsteady flow of a single cylinder, two stroke gasoline engine using advanced numerical tools, which are in turn validated by means of experimental measurements. In particular, a 3D model (based on STAR-CD code) of the entire engine and a 1D-3D integrated fluid dynamics model (based on GT-POWER 1D and Converge-LITE 3D codes) is developed and applied for the representation of the geometrical domain and for the prediction of performance and gasdynamics in the whole intake and exhaust systems. The methodology allows users to accurately predict and deeply understand unsteady phenomena in the whole engine and capture the wave motion, which strongly affects the muffler 3D design in small two stroke engines equipped with resonance pipes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-32-0050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 98visibility views 98 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2016-32-0050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2014 ItalyPublisher:Elsevier BV Authors: DE BELLIS, VINCENZO; Severi E.; Fontanesi S.; BOZZA, FABIO;handle: 11588/877402 , 11588/571859 , 11380/1019517
AbstractAs discussed in the part I of this paper, 3D models represent a useful tool for a detailed description of the mean and turbulent flow fields inside the engine cylinder. 3D results are utilized to develop and validate a 0D phenomenological turbulence model, sensitive to the variation of operative parameters such as valve phasing, valve lift, engine speed, etc.In part II of this paper, a 0D phenomenological combustion model is presented, as well. It is based on a fractal description of the flame front and is able to sense each of the fuel properties, the operating conditions (air-to-fuel ratio, spark advance, boost level) and the combustion chamber geometry. In addition, it is capable to properly handle different turbulence levels predicted by means of the turbulence model presented in the part I.The turbulence and combustion models are included, through user routines, in the commercial software GT-Power™. With reference to a small twin-cylinder VVA turbocharged engine, the turbulence/combustion model, once properly tuned, is finally used to calculate in-cylinder pressure traces, rate of heat release and overall engine performance at full load operations and brake specific fuel consumption at part load, as well. An excellent agreement between numerical forecasts and experimental evidence is obtained.
IRIS UNIMORE - Archi... arrow_drop_down IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaConference object . 2014License: CC BY NC NDArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014License: CC 0Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 96 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio EmiliaConference object . 2014License: CC BY NC NDArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014License: CC 0Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2014add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:SAE International Authors: D'Adamo, Alessandro; Breda, Sebastiano; Berni, Fabio; Fontanesi, Stefano;handle: 11380/1171574
A numerical study using large-eddy simulations (LES) to reproduce and understand sources of cycle-to-cycle variation (CCV) in spark-initiated internal combustion engines (ICEs) is presented. Two relevantly different spark-ignition (SI) units, that is, a homogeneous-charge slow-speed singlecylinder research unit (the transparent combustion chamber (TCC)-III, Engine 1) and a stratifiedcharge high-revving speed gasoline direct injection (GDI) (Engine 2) one, are analyzed in fired operations. Multiple-cycle simulations are carried out for both engines and LES results well reproduce the experimentally measured combustion CCV. A correlation study is carried out, emphasizing the decisive influence of the early flame period variability (1% of mass fraction burnt (MFB1)) on the entire combustion event in both ICEs. The focus is moved onto the early flame characteristics, and the crucial task to determine the dominant causes of its variability (if any) is undertaken. A two-level analysis is carried out: the influence of global parameters is assessed at first; second, local details in the ignition region are analyzed. A comparison of conditions at combustion onset is carried out and case-specific leading factors for combustion CCV are identified and ranked. Finally, comparative simulations are presented using a simpler flame deposition ignition model: the simulation flaws are evident due to modeling assumptions in the flame/flow interaction at ignition. The relevance of this study is the knowledge extension of turbulence-driven phenomena in ICEs allowed by advanced CFD (Computational Fluid Dynamics) simulations. The application to different engine types proves the soundness of the used models and it confirms that CCV is based on enginespecific factors. Simulations show how CCV originates from the interplay of small- and large-scale factors in Engine 1, due to the lack of coherent flows, whereas in Engine 2 the dominant CCV promoters are local air-to-fuel ratio (AFR) and flow velocity at ignition. This confirms the absence of a generally valid ranking, and it demonstrates the use of LES as a development and designorienting tool for next-generation engines.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/03-12-01-0007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 94visibility views 94 download downloads 56 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/03-12-01-0007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV Authors: Rinaldini, Carlo Alberto; Breda, Sebastiano; Fontanesi, Stefano; Savioli, Tommaso;handle: 11380/1148035
AbstractOne of the most critical challenges for the specific power increase of turbocharged SI engines is the low end torque, limited by two aspects. First, the big size of the compressor necessary to deliver the maximum airflow does not allow high boost pressures at low speed, due to the surge line proximity. Second, the flame front velocity may become slower than the end gas auto-ignition rate, thus increasing the risk of knocking.This study is based on a current SI GDI V8 turbocharged engine, modeled by means of CFD tools, both 1d and 3d. The goal of the activity is to lower by 20% the displacement, without reducing brake torque, all over the engine speed range.It was decided to adopt a smaller bore, keeping stroke constant. Obviously, the combustion chamber, the valves and the intake-exhaust ports have been re-designed, as well as the whole intake and exhaust system. Instead of the two turbochargers, one for each bank of cylinders, a triple-turbocharger layout has been considered.The development of the engine has been carried out by means of 1D engine cycle simulations, using predictive knock models, calibrated with the support of both experiments and CFD-3d simulations. A few operating conditions for the final configuration have been also analyzed by means of a 3-d CFD tool.The paper presents the results of this activity, and describes in details the guidelines followed for the development of the engine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 149visibility views 149 download downloads 177 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV D'ADAMO, Alessandro; BREDA, SEBASTIANO; FONTANESI, Stefano; Irimescu, Adrian; Merola, Simona Silvia; Tornatore, Cinzia;handle: 20.500.14243/358143 , 11380/1135293
In the recent past engine knock emerged as one of the main limiting aspects for the achievement of higher efficiency targets in modern spark-ignition (SI) engines. To attain these requirements, engine operating points must be moved as close as possible to the onset of abnormal combustions, although the turbulent nature of flow field and SI combustion leads to possibly ample fluctuations between consecutive engine cycles. This forces engine designers to distance the target condition from its theoretical optimum in order to prevent abnormal combustion, which can potentially damage engine components because of few individual heavy-knocking cycles. A statistically based RANS knock model is presented in this study, whose aim is the prediction not only of the ensemble average knock occurrence, poorly meaningful in such a stochastic event, but also of a knock probability. The model is based on look-up tables of autoignition times from detailed chemistry, coupled with transport equations for the variance of mixture fraction and enthalpy. The transported perturbations around the ensemble average value are based on variable gradients and on a local turbulent time scale. A multi-variate cell-based Gaussian-PDF model is proposed for the unburnt mixture, resulting in a statistical distribution for the in-cell reaction rate. An average knock precursor and its variance are independently calculated and transported; this results in the prediction of an earliest knock probability preceding the ensemble average knock onset, as confirmed by the experimental evidence. The proposed model estimates not only the regions where the average knock is promoted, but also where and when the first knock is more likely to be encountered. The application of the model to a RANS simulation of a modern turbocharged direct injection (DI) SI engine with optical access is presented and the analysis of the knock statistical occurrence obtained by the proposed model adds an innovative contribution to overcome the limitation of consolidated "average knock" analyses typical of a RANS approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.01.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 147visibility views 147 download downloads 64 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.01.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Journal , Article 2003 ItalyPublisher:SAE International Authors: BIANCHI, GIAN MARCO; Fontanesi S.;doi: 10.4271/2003-01-0003
handle: 11380/608881 , 11585/127088
The evaluation of the steady-flow discharge coefficient of ICE port assemble is known to be very sensitive to the capability of the turbulence sub-models in capturing the boundary layer dynamics. Despite the fact that theintrinsically unsteady phenomena related to flow separation claim for LES approach, the present paper aims to demonstrate that RANS simulation can provide reliable design-oriented results by using low-Reynolds cubic k-e turbulence models. Different engine intake port assemblies and pressure drops have been simulated by using the CFD STAR-CD code and numerical results have been compared versus experiments in terms of both global parameters, i.e. the discharge coefficient, and local parameters, by means of static pressure measurements along the intake port just upstream of the valve seat. Computations have been performed by comparing two turbulence models: Low-Reynolds cubic k-e and High-Reynolds cubic k-e. The analysis leaded to remarkable assessments in the definition of a correct and reliable methodology for the evaluation of engine port breathing capabilities. Comparison between numerical results and experiments showed that the low-Reynolds cubic k-e model is unavoidable to correctly capture the influence of port feature variations on engine permeability. In particular, the deficiencies demonstrated by High-Reynolds cubic k-e turbulence model in resolving the influence of near-wall shear and adverse pressure gradient effect on boundary layer dynamics are completely overcome by the use of the Low-Reynolds formulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2003-01-0003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 75visibility views 75 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2003-01-0003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2011 ItalyPublisher:SAE International Authors: FONTANESI, Stefano; CICALESE, Giuseppe; D'ADAMO, Alessandro; G. Pivetti;doi: 10.4271/2011-24-0132
handle: 11380/703802
The paper presents a combined experimental and numerical activity carried out to improve the accuracy of conjugate heat transfer CFD simulations of a high-performance S.I. engine water cooling jacket.Due to the complexity of the computational domain, which covers both the coolant jacket and the surrounding metal cast (both head and block), particular care is required in order to find a tradeoff between the accuracy and the cost-effectiveness of the numerical procedure. In view of the presence of many complex physical phenomena, the contribution of some relevant CFD parameters and sub-models is separately evaluated and discussed.Among the formers, the extent of the computational domain, the choice of a proper set of boundary conditions and the detailed representation of the physical properties of the involved materials are separately considered. Among the latters, the choice between a simplified single-phase approach and a more complex two-phase approach taking into account the effects of phase transition within the engine coolant is discussed.The predictive capability of the CFD-CHT methodology is assessed by means of the comparison between CFD results and experimental measurements provided by the engine manufacturer for different engine operating conditions.At the end of the validation process, a methodology for the correct and cost-effective characterization of conjugate heat transfer is proposed, showing a reasonable trade-off between the predictive capability and the computational effort of the simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2011-24-0132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 74visibility views 74 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2011-24-0132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 ItalyPublisher:SAE International Rosetti A.; Iotti C.; Bedogni A.; Cantore G.; Fontanesi S.; Berni F.;doi: 10.4271/2019-24-0006
handle: 11380/1200169
The paper aims at defining a methodology for the prediction and understanding of knock tendency in internal combustion engine piston crevices by means of CFD simulations. The motivation for the analysis comes from a real design requirement which appeared during the development of a new high performance SI unit: It is in fact widely known that, in high performance engines (especially the turbocharged ones), the high values of pressure and temperature inside the combustion chamber during the engine cycle may cause knocking phenomena. "Standard" knock can be easily recognized by direct observation of the in-cylinder measured pressure trace; it is then possible to undertake proper actions and implement design and control improvements to prevent it with relatively standard 3D-CFD analyses. Some unusual types of detonation may occur somewhere else in the combustion chamber: Knocking inside piston/liner crevices belongs to the latter category and damages on the piston top land (very similar to pitting) are one of the evidence of knock onset in this region. The very localized regions of damage onset, the cycle to cycle variability and the very short duration of the phenomena do not allow to obtain fully reliable experimental data concerning the investigated problem. A new methodology is therefore implemented in CFD to drive the root causes identification and understanding the impact of crevice design. A preliminary CFD 3D in-cylinder analysis is performed, in order to understand the criticalities in the piston to liner fireland due to local pressure and temperature temporal evolution. Then a "model reduction" is proposed, which is necessary in order to study the problem with reasonable computational costs and times. A 2D simplified model is developed which is able to maintain the possibility to correctly represent the local thermo fluid dynamic effects, especially the auto-ignition conditions. Finally, new geometries are studied in order to prevent local knocking and retard auto-ignition such to improve the KLSA.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 110visibility views 110 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Berni F.; Cicalese G.; Borghi M.; Fontanesi S.;handle: 11380/1239812
Abstract Convective heat transfer heavily affects both efficiency and reliability in many industrial problems. For this reason, its proper estimation is mandatory since the early design stage. 3D-CFD simulations represent a powerful tool for the prediction of the heat fluxes. This is even more true considering that typical operating conditions of many applications prevent experimental characterization. As for 3D-CFD computations, the combination of Reynolds Averaged Navier Stokes (RANS) turbulence modeling and high-Reynolds wall treatment is still widely diffused in the industrial practice, to save both computational cost and time. The adoption of a high-Reynolds wall treatment based on wall functions, which permits the use of relatively coarse near-wall grids, implies specific restrictions for the height of the near-wall cell layer. In particular, the first cell-centroid must be placed in the fully turbulent (log-) region of the boundary layer. The main drawback of a cell-centroid falling into the viscous sub-layer consists in a huge overestimation of both wall shear stress and wall heat transfer. The lower the y + is (i.e. the lower the wall distance is), the higher the predicted values are. As for many other industrial applications, Internal Combustion Engine (ICE) in-cylinder simulations remarkably suffer from the presence of low y + values in the computational domain, mostly at part-loads and low-revving speeds. At specific operating points, such as idle conditions, it is nearly impossible to maintain y + in the log-region, even during the compression stroke, when the velocity field should allow the dimensionless distance to reach the highest values in the engine cycle. To avoid such undesired overestimations of shear stress and heat transfer, a modified formulation of the thermal law of the wall ( T + ) to be used in the viscous sub-layer is proposed in the present paper. To further reduce the grid-dependency of the high-Reynolds wall treatment, a similar modification is applied to the velocity wall function ( u + ). Resulting wall heat flux and wall shear stress are shown to be grid-independent, at least for y + > 3 . The proposed alternative modeling for u + inside the viscous sub-layer is validated in terms of flow field against experimental Laser-Doppler Anemometry (LDA) data and Direct Numerical Simulation (DNS) results. Despite the present analysis focuses on in-cylinder simulations, the alternative u + and T + formulations can be applied to any complex flow. Furthermore, the proposed modified laws of the wall can be adopted in conjunction with any wall-function-based heat transfer model.
IRIS UNIMORE - Archi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 103visibility views 103 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.116838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Giuseppe Corda; Stefano Fontanesi; Alessandro d'Adamo;handle: 11380/1274590
In this paper, a three-dimensional, multi-physics and multi-phase CFD model is presented and validated on straight single-channel configurations to analyse the influence of the channel/rib width ratio. In the first part, two cases with wide/narrow channel/rib spacing are reproduced from a literature campaign including neutron radiography (NRG) measured water distribution, which is well reproduced in simulations thanks to the novel implementation of an in-house developed macro-homogeneous catalyst layer sub-model. In the second part, the inclusion of an adapted compression model from literature allows to investigate in detail the effect that the deformation of the porous parts (diffusion media and catalyst layers) has on the cell performance, considering two levels of compression (i.e. clamping pressure). All transport properties (flow/energy/charge) are locally modified as a function of the inhomogeneous compression acted by the BPPs, e.g. influencing flow permeability and thermo/electrical conductivity. The obtained numerical results are compared against those from the undeformed geometry, highlighting a relevant operational difference and explaining it as a compression-related oxygen starvation. The study presents a comprehensive model for PEMFC simulation, including an efficient catalyst layer model and demonstrating the relevance of including the often-neglected compression effect on full-scale cell (or stack) models.
IRIS UNIMORE - Archi... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.02.201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 124visibility views 124 Powered bymore_vert IRIS UNIMORE - Archi... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.02.201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu