- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Yiqi Luo; Yiqi Luo; Trevor F. Keenan; Trevor F. Keenan; Matthew J. Smith;doi: 10.1111/gcb.12766
pmid: 25327167
AbstractTerrestrial ecosystems sequester roughly 30% of anthropogenic carbon emission. However this estimate has not been directly deduced from studies of terrestrial ecosystems themselves, but inferred from atmospheric and oceanic data. This raises a question: to what extent is the terrestrial carbon cycle intrinsically predictable? In this paper, we investigated fundamental properties of the terrestrial carbon cycle, examined its intrinsic predictability, and proposed a suite of future research directions to improve empirical understanding and model predictive ability. Specifically, we isolated endogenous internal processes of the terrestrial carbon cycle from exogenous forcing variables. The internal processes share five fundamental properties (i.e., compartmentalization, carbon input through photosynthesis, partitioning among pools, donor pool‐dominant transfers, and the first‐order decay) among all types of ecosystems on the Earth. The five properties together result in an emergent constraint on predictability of various carbon cycle components in response to five classes of exogenous forcing. Future observational and experimental research should be focused on those less predictive components while modeling research needs to improve model predictive ability for those highly predictive components. We argue that an understanding of predictability should provide guidance on future observational, experimental and modeling research.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3xp1z3ghData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3xp1z3ghData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Wiley Authors: Keenan, Trevor F; Richardson, Andrew D;doi: 10.1111/gcb.12890
pmid: 25662890
AbstractAutumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing season, will change under future climate conditions. The most commonly held paradigm is that temperature and photoperiod are the primary controls, which suggests a future extension of the autumnal growing season as global temperatures rise. Here, using two decades of ground‐ and satellite‐based observations of temperate deciduous forest phenology, we show that the timing of autumn senescence is correlated with the timing of spring budburst across the entire eastern United States. On a year‐to‐year basis, an earlier/later spring was associated with an earlier/later autumn senescence, both for individual species and at a regional scale. We use the observed relationship to develop a novel model of autumn phenology. In contrast to current phenology models, this model predicts that the potential response of autumn phenology to future climate change is strongly limited by the impact of climate change on spring phenology. Current models of autumn phenology therefore may overpredict future increases in the length of the growing season, with subsequent impacts for modeling future CO2 uptake and evapotranspiration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/6wf9h783Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 294 citations 294 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/6wf9h783Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:American Geophysical Union (AGU) Theodoros Mastrotheodoros; Christoforos Pappas; Peter Molnar; Paolo Burlando; Trevor F. Keenan; Pierre Gentine; Christopher M. Gough; Simone Fatichi;doi: 10.1002/2017jg003890
AbstractElevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux observations from Northern Hemisphere forests showed a large increase in inherent water use efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered by environmental change. We found that IWUE increased by ~1.3% yr−1, which is less than previously reported but still larger than theoretical expectations. Numerical simulations with the Tethys‐Chloris ecosystem model using temporally static plant functional traits cannot explain this increase. Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results show that trends in plant functional traits, equal to 1.0% yr−1, can explain the observed IWUE trends. Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, and energy fluxes with profound implications for both the monitoring of temporal changes in plant functional traits and their representation in Earth system models.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/7xw1c898Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaJournal of Geophysical Research BiogeosciencesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017jg003890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/7xw1c898Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaJournal of Geophysical Research BiogeosciencesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017jg003890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, United KingdomPublisher:Oxford University Press (OUP) Xiangyi Li; Shilong Piao; Chris Huntingford; Josep Peñuelas; Hui Yang; Hao Xu; Anping Chen; Pierre Friedlingstein; Trevor F. Keenan; Stephen Sitch; Xuhui Wang; Jakob Zscheischler; Miguel D. Mahecha;pmid: 37064217
pmc: PMC10103823
ABSTRACT Identifying the thresholds of drought that, if crossed, suppress vegetation functioning is vital for accurate quantification of how land ecosystems respond to climate variability and change. We present a globally applicable framework to identify drought thresholds for vegetation responses to different levels of known soil-moisture deficits using four remotely sensed vegetation proxies spanning 2001–2018. The thresholds identified represent critical inflection points for changing vegetation responses from highly resistant to highly vulnerable in response to drought stress, and as a warning signal for substantial vegetation impacts. Drought thresholds varied geographically, with much lower percentiles of soil-moisture anomalies in vegetated areas covered by more forests, corresponding to a comparably stronger capacity to mitigate soil water deficit stress in forested ecosystems. Generally, those lower thresholds are detected in more humid climates. State-of-the-art land models, however, overestimated thresholds of soil moisture (i.e. overestimating drought impacts), especially in more humid areas with higher forest covers and arid areas with few forest covers. Based on climate model projections, we predict that the risk of vegetation damage will increase by the end of the twenty-first century in some hotspots like East Asia, Europe, Amazon, southern Australia and eastern and southern Africa. Our data-based results will inform projections on future drought impacts on terrestrial ecosystems and provide an effective tool for drought management.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/5nq214frData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwad049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 80 citations 80 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/5nq214frData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwad049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Denmark, Italy, Belgium, Germany, United States, ItalyPublisher:American Geophysical Union (AGU) Funded by:EC | CRESCENDO, MIUREC| CRESCENDO ,MIURTrevor F. Keenan; Trevor F. Keenan; Elisa Grieco; Andreas Ibrom; Giorgio Matteucci; Alessio Collalti; Alessio Collalti; Christopher P. O. Reyer; Mirco Migliavacca; Alessandro Cescatti; Carlo Trotta; Ruediger Grote; Alessandro Anav; Ben Bond-Lamberty; Frank Veroustraete; Enrico Scoccimarro; Matteo Campioli; Sara Vicca; Ladislav Šigut;AbstractForest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process‐based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological‐climate‐induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest‐based mitigation strategies and should be carefully considered within a portfolio of mitigation options.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/9849z0nkData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOnline Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenJournal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortaleScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ms001275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/9849z0nkData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOnline Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenJournal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortaleScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ms001275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Bruce A. Hungate; Matthew E. Craig; Matthew E. Craig; Sara Vicca; Richard P. Phillips; Benjamin D. Stocker; Benjamin D. Stocker; K. Van Sundert; Benjamin N. Sulman; R. D. Evans; Peter B. Reich; K. J. van Groenigen; J. Rosende; César Terrer; César Terrer; Jennifer Pett-Ridge; J. Fisher; J. Fisher; Trevor F. Keenan; Haicheng Zhang; Elise Pendall; Robert B. Jackson; Yolima Carrillo; Adam F. A. Pellegrini; Adam F. A. Pellegrini;Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.
Nature arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03306-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 389 citations 389 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03306-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | PREEVENTS Track 2: Collab...NSF| PREEVENTS Track 2: Collaborative Research: Flash droughts: process, prediction, and the central role of vegetation in their evolution.Trevor F. Keenan; Trevor F. Keenan; Sha Zhou; Yao Zhang; Yao Zhang; Yao Zhang;Vegetation dynamics are affected not only by the concurrent climate but also by memory-induced lagged responses. For example, favourable climate in the past could stimulate vegetation growth to surpass the ecosystem carrying capacity, leaving an ecosystem vulnerable to climate stresses. This phenomenon, known as structural overshoot, could potentially contribute to worldwide drought stress and forest mortality but the magnitude of the impact is poorly known due to the dynamic nature of overshoot and complex influencing timescales. Here, we use a dynamic statistical learning approach to identify and characterize ecosystem structural overshoot globally and quantify the associated drought impacts. We find that structural overshoot contributed to around 11% of drought events during 1981-2015 and is often associated with compound extreme drought and heat, causing faster vegetation declines and greater drought impacts compared to non-overshoot related droughts. The fraction of droughts related to overshoot is strongly related to mean annual temperature, with biodiversity, aridity and land cover as secondary factors. These results highlight the large role vegetation dynamics play in drought development and suggest that soil water depletion due to warming-induced future increases in vegetation could cause more frequent and stronger overshoot droughts.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/9fv105srData sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01551-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 154 citations 154 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/9fv105srData sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01551-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:Springer Science and Business Media LLC Yanlan Liu; William Riley; Trevor Keenan; Zelalem Mekonnen; Jennifer Holm; Qing Zhu; Margaret Torn;AbstractArctic shrub expansion alters carbon budgets, albedo, and warming rates in high latitudes but remains challenging to predict due to unclear underlying controls. Observational studies and models typically use relationships between observed shrub presence and current environmental suitability (bioclimate and topography) to predict shrub expansion, while omitting shrub demographic processes and non-stationary response to changing climate. Here, we use high-resolution satellite imagery across Alaska and western Canada to show that observed shrub expansion has not been controlled by environmental suitability during 1984–2014, but can only be explained by considering seed dispersal and fire. These findings provide the impetus for better observations of recruitment and for incorporating currently underrepresented processes of seed dispersal and fire in land models to project shrub expansion and climate feedbacks. Integrating these dynamic processes with projected fire extent and climate, we estimate shrubs will expand into 25% of the non-shrub tundra by 2100, in contrast to 39% predicted based on increasing environmental suitability alone. Thus, using environmental suitability alone likely overestimates and misrepresents shrub expansion pattern and its associated carbon sink.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/3wv5r747Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-31597-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/3wv5r747Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-31597-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United Kingdom, AustraliaPublisher:IOP Publishing Iain Colin Prentice; Iain Colin Prentice; Anna M. Ukkola; Anna M. Ukkola; Trevor F. Keenan; Trevor F. Keenan; Doug I. Kelley; Doug I. Kelley;handle: 10044/1/42789 , 1959.4/unsworks_53504
Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. We show surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmospheric CO2) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified by CO2-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/6r77t8mdData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/42789Data sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53504Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/9/094022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/6r77t8mdData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/42789Data sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53504Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/9/094022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Wiley Shuli Niu; Zheng Fu; Yiqi Luo; Paul C. Stoy; Trevor F. Keenan; Benjamin Poulter; Leiming Zhang; Shilong Piao; Xuhui Zhou; Han Zheng; Jiayin Han; Qiufeng Wang; Guirui Yu;doi: 10.1111/geb.12633
AbstractAimTerrestrial ecosystems have sequestered, on average, the equivalent of 30% of anthropogenic carbon (C) emissions during the past decades, but annual sequestration varies from year to year. For effective C management, it is imperative to develop a predictive understanding of the interannual variability (IAV) of terrestrial net ecosystem C exchange (NEE).LocationGlobal terrestrial ecosystems.MethodsWe conducted a comprehensive review to examine the IAV of NEE at global, regional and ecosystem scales. Then we outlined a conceptual framework for understanding how anomalies in climate factors impact ecological processes of C cycling and thus influence the IAV of NEE through biogeochemical regulation.ResultsThe phenomenon of IAV in land NEE has been ubiquitously observed at global, regional and ecosystem scales. Global IAV is often attributable to either tropical or semi‐arid regions, or to some combination thereof, which is still under debate. Previous studies focus on identifying climate factors as driving forces of IAV, whereas biological mechanisms underlying the IAV of ecosystem NEE are less clear. We found that climate anomalies affect the IAV of NEE primarily through their differential impacts on ecosystem C uptake and respiration. Moreover, recent studies suggest that the carbon uptake period makes less contribution than the carbon uptake amplitude to IAV in NEE. Although land models incorporate most processes underlying IAV, their efficacy to predict the IAV in NEE remains low.Main conclusionsTo improve our ability to predict future IAV of the terrestrial C cycle, we have to understand biological mechanisms through which anomalies in climate factors cause the IAV of NEE. Future research needs to pay more attention not only to the differential effects of climate anomalies on photosynthesis and respiration but also to the relative importance of the C uptake period and amplitude in causing the IAV of NEE. Ultimately, we need multiple independent approaches, such as benchmark analysis, data assimilation and time‐series statistics, to integrate data, modelling frameworks and theory to improve our ability to predict future IAV in the terrestrial C cycle.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5b13p95mData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Ecology and BiogeographyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5b13p95mData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Ecology and BiogeographyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Yiqi Luo; Yiqi Luo; Trevor F. Keenan; Trevor F. Keenan; Matthew J. Smith;doi: 10.1111/gcb.12766
pmid: 25327167
AbstractTerrestrial ecosystems sequester roughly 30% of anthropogenic carbon emission. However this estimate has not been directly deduced from studies of terrestrial ecosystems themselves, but inferred from atmospheric and oceanic data. This raises a question: to what extent is the terrestrial carbon cycle intrinsically predictable? In this paper, we investigated fundamental properties of the terrestrial carbon cycle, examined its intrinsic predictability, and proposed a suite of future research directions to improve empirical understanding and model predictive ability. Specifically, we isolated endogenous internal processes of the terrestrial carbon cycle from exogenous forcing variables. The internal processes share five fundamental properties (i.e., compartmentalization, carbon input through photosynthesis, partitioning among pools, donor pool‐dominant transfers, and the first‐order decay) among all types of ecosystems on the Earth. The five properties together result in an emergent constraint on predictability of various carbon cycle components in response to five classes of exogenous forcing. Future observational and experimental research should be focused on those less predictive components while modeling research needs to improve model predictive ability for those highly predictive components. We argue that an understanding of predictability should provide guidance on future observational, experimental and modeling research.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3xp1z3ghData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3xp1z3ghData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Wiley Authors: Keenan, Trevor F; Richardson, Andrew D;doi: 10.1111/gcb.12890
pmid: 25662890
AbstractAutumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing season, will change under future climate conditions. The most commonly held paradigm is that temperature and photoperiod are the primary controls, which suggests a future extension of the autumnal growing season as global temperatures rise. Here, using two decades of ground‐ and satellite‐based observations of temperate deciduous forest phenology, we show that the timing of autumn senescence is correlated with the timing of spring budburst across the entire eastern United States. On a year‐to‐year basis, an earlier/later spring was associated with an earlier/later autumn senescence, both for individual species and at a regional scale. We use the observed relationship to develop a novel model of autumn phenology. In contrast to current phenology models, this model predicts that the potential response of autumn phenology to future climate change is strongly limited by the impact of climate change on spring phenology. Current models of autumn phenology therefore may overpredict future increases in the length of the growing season, with subsequent impacts for modeling future CO2 uptake and evapotranspiration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/6wf9h783Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 294 citations 294 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/6wf9h783Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:American Geophysical Union (AGU) Theodoros Mastrotheodoros; Christoforos Pappas; Peter Molnar; Paolo Burlando; Trevor F. Keenan; Pierre Gentine; Christopher M. Gough; Simone Fatichi;doi: 10.1002/2017jg003890
AbstractElevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux observations from Northern Hemisphere forests showed a large increase in inherent water use efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered by environmental change. We found that IWUE increased by ~1.3% yr−1, which is less than previously reported but still larger than theoretical expectations. Numerical simulations with the Tethys‐Chloris ecosystem model using temporally static plant functional traits cannot explain this increase. Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results show that trends in plant functional traits, equal to 1.0% yr−1, can explain the observed IWUE trends. Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, and energy fluxes with profound implications for both the monitoring of temporal changes in plant functional traits and their representation in Earth system models.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/7xw1c898Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaJournal of Geophysical Research BiogeosciencesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017jg003890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/7xw1c898Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaJournal of Geophysical Research BiogeosciencesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017jg003890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, United KingdomPublisher:Oxford University Press (OUP) Xiangyi Li; Shilong Piao; Chris Huntingford; Josep Peñuelas; Hui Yang; Hao Xu; Anping Chen; Pierre Friedlingstein; Trevor F. Keenan; Stephen Sitch; Xuhui Wang; Jakob Zscheischler; Miguel D. Mahecha;pmid: 37064217
pmc: PMC10103823
ABSTRACT Identifying the thresholds of drought that, if crossed, suppress vegetation functioning is vital for accurate quantification of how land ecosystems respond to climate variability and change. We present a globally applicable framework to identify drought thresholds for vegetation responses to different levels of known soil-moisture deficits using four remotely sensed vegetation proxies spanning 2001–2018. The thresholds identified represent critical inflection points for changing vegetation responses from highly resistant to highly vulnerable in response to drought stress, and as a warning signal for substantial vegetation impacts. Drought thresholds varied geographically, with much lower percentiles of soil-moisture anomalies in vegetated areas covered by more forests, corresponding to a comparably stronger capacity to mitigate soil water deficit stress in forested ecosystems. Generally, those lower thresholds are detected in more humid climates. State-of-the-art land models, however, overestimated thresholds of soil moisture (i.e. overestimating drought impacts), especially in more humid areas with higher forest covers and arid areas with few forest covers. Based on climate model projections, we predict that the risk of vegetation damage will increase by the end of the twenty-first century in some hotspots like East Asia, Europe, Amazon, southern Australia and eastern and southern Africa. Our data-based results will inform projections on future drought impacts on terrestrial ecosystems and provide an effective tool for drought management.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/5nq214frData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwad049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 80 citations 80 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/5nq214frData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwad049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Denmark, Italy, Belgium, Germany, United States, ItalyPublisher:American Geophysical Union (AGU) Funded by:EC | CRESCENDO, MIUREC| CRESCENDO ,MIURTrevor F. Keenan; Trevor F. Keenan; Elisa Grieco; Andreas Ibrom; Giorgio Matteucci; Alessio Collalti; Alessio Collalti; Christopher P. O. Reyer; Mirco Migliavacca; Alessandro Cescatti; Carlo Trotta; Ruediger Grote; Alessandro Anav; Ben Bond-Lamberty; Frank Veroustraete; Enrico Scoccimarro; Matteo Campioli; Sara Vicca; Ladislav Šigut;AbstractForest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process‐based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological‐climate‐induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest‐based mitigation strategies and should be carefully considered within a portfolio of mitigation options.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/9849z0nkData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOnline Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenJournal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortaleScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ms001275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/9849z0nkData sources: Bielefeld Academic Search Engine (BASE)Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOnline Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenJournal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortaleScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ms001275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Bruce A. Hungate; Matthew E. Craig; Matthew E. Craig; Sara Vicca; Richard P. Phillips; Benjamin D. Stocker; Benjamin D. Stocker; K. Van Sundert; Benjamin N. Sulman; R. D. Evans; Peter B. Reich; K. J. van Groenigen; J. Rosende; César Terrer; César Terrer; Jennifer Pett-Ridge; J. Fisher; J. Fisher; Trevor F. Keenan; Haicheng Zhang; Elise Pendall; Robert B. Jackson; Yolima Carrillo; Adam F. A. Pellegrini; Adam F. A. Pellegrini;Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.
Nature arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03306-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 389 citations 389 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03306-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | PREEVENTS Track 2: Collab...NSF| PREEVENTS Track 2: Collaborative Research: Flash droughts: process, prediction, and the central role of vegetation in their evolution.Trevor F. Keenan; Trevor F. Keenan; Sha Zhou; Yao Zhang; Yao Zhang; Yao Zhang;Vegetation dynamics are affected not only by the concurrent climate but also by memory-induced lagged responses. For example, favourable climate in the past could stimulate vegetation growth to surpass the ecosystem carrying capacity, leaving an ecosystem vulnerable to climate stresses. This phenomenon, known as structural overshoot, could potentially contribute to worldwide drought stress and forest mortality but the magnitude of the impact is poorly known due to the dynamic nature of overshoot and complex influencing timescales. Here, we use a dynamic statistical learning approach to identify and characterize ecosystem structural overshoot globally and quantify the associated drought impacts. We find that structural overshoot contributed to around 11% of drought events during 1981-2015 and is often associated with compound extreme drought and heat, causing faster vegetation declines and greater drought impacts compared to non-overshoot related droughts. The fraction of droughts related to overshoot is strongly related to mean annual temperature, with biodiversity, aridity and land cover as secondary factors. These results highlight the large role vegetation dynamics play in drought development and suggest that soil water depletion due to warming-induced future increases in vegetation could cause more frequent and stronger overshoot droughts.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/9fv105srData sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01551-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 154 citations 154 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/9fv105srData sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01551-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:Springer Science and Business Media LLC Yanlan Liu; William Riley; Trevor Keenan; Zelalem Mekonnen; Jennifer Holm; Qing Zhu; Margaret Torn;AbstractArctic shrub expansion alters carbon budgets, albedo, and warming rates in high latitudes but remains challenging to predict due to unclear underlying controls. Observational studies and models typically use relationships between observed shrub presence and current environmental suitability (bioclimate and topography) to predict shrub expansion, while omitting shrub demographic processes and non-stationary response to changing climate. Here, we use high-resolution satellite imagery across Alaska and western Canada to show that observed shrub expansion has not been controlled by environmental suitability during 1984–2014, but can only be explained by considering seed dispersal and fire. These findings provide the impetus for better observations of recruitment and for incorporating currently underrepresented processes of seed dispersal and fire in land models to project shrub expansion and climate feedbacks. Integrating these dynamic processes with projected fire extent and climate, we estimate shrubs will expand into 25% of the non-shrub tundra by 2100, in contrast to 39% predicted based on increasing environmental suitability alone. Thus, using environmental suitability alone likely overestimates and misrepresents shrub expansion pattern and its associated carbon sink.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/3wv5r747Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-31597-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/3wv5r747Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-31597-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United Kingdom, AustraliaPublisher:IOP Publishing Iain Colin Prentice; Iain Colin Prentice; Anna M. Ukkola; Anna M. Ukkola; Trevor F. Keenan; Trevor F. Keenan; Doug I. Kelley; Doug I. Kelley;handle: 10044/1/42789 , 1959.4/unsworks_53504
Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. We show surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmospheric CO2) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified by CO2-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/6r77t8mdData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/42789Data sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53504Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/9/094022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/6r77t8mdData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/42789Data sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53504Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/9/094022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Wiley Shuli Niu; Zheng Fu; Yiqi Luo; Paul C. Stoy; Trevor F. Keenan; Benjamin Poulter; Leiming Zhang; Shilong Piao; Xuhui Zhou; Han Zheng; Jiayin Han; Qiufeng Wang; Guirui Yu;doi: 10.1111/geb.12633
AbstractAimTerrestrial ecosystems have sequestered, on average, the equivalent of 30% of anthropogenic carbon (C) emissions during the past decades, but annual sequestration varies from year to year. For effective C management, it is imperative to develop a predictive understanding of the interannual variability (IAV) of terrestrial net ecosystem C exchange (NEE).LocationGlobal terrestrial ecosystems.MethodsWe conducted a comprehensive review to examine the IAV of NEE at global, regional and ecosystem scales. Then we outlined a conceptual framework for understanding how anomalies in climate factors impact ecological processes of C cycling and thus influence the IAV of NEE through biogeochemical regulation.ResultsThe phenomenon of IAV in land NEE has been ubiquitously observed at global, regional and ecosystem scales. Global IAV is often attributable to either tropical or semi‐arid regions, or to some combination thereof, which is still under debate. Previous studies focus on identifying climate factors as driving forces of IAV, whereas biological mechanisms underlying the IAV of ecosystem NEE are less clear. We found that climate anomalies affect the IAV of NEE primarily through their differential impacts on ecosystem C uptake and respiration. Moreover, recent studies suggest that the carbon uptake period makes less contribution than the carbon uptake amplitude to IAV in NEE. Although land models incorporate most processes underlying IAV, their efficacy to predict the IAV in NEE remains low.Main conclusionsTo improve our ability to predict future IAV of the terrestrial C cycle, we have to understand biological mechanisms through which anomalies in climate factors cause the IAV of NEE. Future research needs to pay more attention not only to the differential effects of climate anomalies on photosynthesis and respiration but also to the relative importance of the C uptake period and amplitude in causing the IAV of NEE. Ultimately, we need multiple independent approaches, such as benchmark analysis, data assimilation and time‐series statistics, to integrate data, modelling frameworks and theory to improve our ability to predict future IAV in the terrestrial C cycle.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5b13p95mData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Ecology and BiogeographyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5b13p95mData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Ecology and BiogeographyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu