- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 FrancePublisher:MDPI AG Funded by:UKRI | AMMA-2050 NEC05274, NSF | Ea SM-3: Collaborative Re...UKRI| AMMA-2050 NEC05274 ,NSF| Ea SM-3: Collaborative Res: Surface-induced Forcing and Decadal Variability and Change of the East Asian Climate, Surface Hydrology & Agriculture-A Modeling and Data ApproachIbourahima Kebe; Ismaila Diallo; Mouhamadou Bamba Sylla; Fernando De Sales; Arona Diedhiou;The present study utilizes three high-resolution simulations from the Regional Climate Model version 4 (RegCM4) to examine the late 21st century changes (2080–2099) in the West African Monsoon (WAM) features. A set of three Earth System Models are utilized to provide initial and lateral boundary conditions to the RegCM4 experiments. Our analysis focuses on seasonal mean changes in WAM large-scale dynamical features, along with their connections with the summer monsoon precipitation. In the historical period, the simulation ensemble means mimic reasonably well the intensity and spatial distribution of the WAM rainfall as well as the WAM circulation patterns at different scales. The future projection of the WAM climate exhibits warming over the whole West Africa leading to precipitation reduction over the Sahel region, and a slight increase over some areas of the Guinea Coast. The position of the African Easterly Jet (AEJ) is shifted southward and the African Easterly Waves (AEWs) activities are reduced, which affect in turn the WAM rainbelt characteristics in terms of position and strength. Overall the changes in simulated AEJ and AEWs contribute substantially to reduce the seasonal summer mean precipitation in West Africa by the late 21st century, with prevailing negative changes in the Savanna-Sahel region. To further explore the robustness of the relationships revealed in this paper, future studies using different high-resolution regional climate models with large ensemble are recommended.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/4/353/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11040353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/4/353/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11040353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 24 Apr 2025 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | CNH-L: Land-Climate-Water...NSF| CNH-L: Land-Climate-Water Feedbacks and Farmer Decision-Making in an Agricultural SystemAuthors: Moreira, Rodrigo Martins; dos Santos, Bruno César; Biggs, Trent; de Sales, Fernando; +1 AuthorsMoreira, Rodrigo Martins; dos Santos, Bruno César; Biggs, Trent; de Sales, Fernando; Sieber, Stefan;pmid: 38890330
AbstractPrioritizing watershed management interventions relies on delineating homogeneous precipitation regions. In this study, we identify these regions in the Brazilian Legal Amazon based on the magnitude of Sen’s Slope trends using annual precipitation data from September to August, employing the Google Earth Engine platform. Utilizing the silhouette method, we determine four distinct clusters representing zones of homogeneous precipitation patterns. Cluster 0 exhibits a significant median increase in precipitation of 3.20 mm year−1 over the period from 1981 to 2020. Cluster 1 shows a notable increase of 8.13 mm year−1, while Clusters 2 and 3 demonstrate reductions in precipitation of − 1.61 mm year−1 and − 3.87 mm year−1, respectively, all statistically significant. Notably, the region known as the arc of deforestation falls within Cluster 2, indicating a concerning trend of reduced precipitation. Additionally, our analysis reveals significant correlations between Sea Surface Temperature (SST) in various oceanic regions and precipitation patterns over the Brazilian Legal Amazon. Particularly noteworthy is the strong positive correlation with SST in the South Atlantic, while negative correlations are observed with SST in the South Pacific and North Atlantic. These findings provide valuable insights for enhancing climate adaptation strategies in the Brazilian Legal Amazon region.
Scientific Reports arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-63583-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Scientific Reports arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-63583-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Public Library of Science (PLoS) Authors: David E. Rother; Fernando De Sales; Doug Stow; Joe McFadden;Wildfire burn severity has important implications for postfire vegetation recovery and boundary-layer climate. We used a collection of Moderate Resolution Imaging Spectroradiometer (MODIS) datasets to investigate the impact of burn severity (relative differenced Normalized Burn Ratio, RdNBR) on vegetation recovery (Enhanced Vegetation Index, EVI), albedo change, and land surface temperature in seven California ecoregions, including: Southern California Mountains (SCM), Southern California Coast (SCC), Central California Foothills (CCF), Klamath (K), Cascades (C), Eastern Cascades (EC), and Sierra Nevada (SN). A statewide MODIS-derived RdNBR dataset was used to analyze the impact of burn severity on the five-year postfire early-summer averages of each biophysical variable between the years 2003–2020. We found that prefire EVI values were largest, and prefire albedo and temperature were lowest in the K, C, EC, and SN ecoregions. Furthermore, the largest changes between prefire and first-year postfire biophysical response tended to occur in the moderate and high burn severity classes across all ecoregions. First-year postfire albedo decreased in the K, C, EC, and SN but increased in the SCM, SCC, and CCF ecoregions. The greatest decreases, but most rapid recovery, of EVI occurred after high severity fires in all ecoregions. After five-years post-fire, EVI and land surface temperature did not return to prefire levels in any burn severity class in any ecoregion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0274428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0274428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 FrancePublisher:MDPI AG Funded by:UKRI | AMMA-2050 NEC05274, NSF | Ea SM-3: Collaborative Re...UKRI| AMMA-2050 NEC05274 ,NSF| Ea SM-3: Collaborative Res: Surface-induced Forcing and Decadal Variability and Change of the East Asian Climate, Surface Hydrology & Agriculture-A Modeling and Data ApproachIbourahima Kebe; Ismaila Diallo; Mouhamadou Bamba Sylla; Fernando De Sales; Arona Diedhiou;The present study utilizes three high-resolution simulations from the Regional Climate Model version 4 (RegCM4) to examine the late 21st century changes (2080–2099) in the West African Monsoon (WAM) features. A set of three Earth System Models are utilized to provide initial and lateral boundary conditions to the RegCM4 experiments. Our analysis focuses on seasonal mean changes in WAM large-scale dynamical features, along with their connections with the summer monsoon precipitation. In the historical period, the simulation ensemble means mimic reasonably well the intensity and spatial distribution of the WAM rainfall as well as the WAM circulation patterns at different scales. The future projection of the WAM climate exhibits warming over the whole West Africa leading to precipitation reduction over the Sahel region, and a slight increase over some areas of the Guinea Coast. The position of the African Easterly Jet (AEJ) is shifted southward and the African Easterly Waves (AEWs) activities are reduced, which affect in turn the WAM rainbelt characteristics in terms of position and strength. Overall the changes in simulated AEJ and AEWs contribute substantially to reduce the seasonal summer mean precipitation in West Africa by the late 21st century, with prevailing negative changes in the Savanna-Sahel region. To further explore the robustness of the relationships revealed in this paper, future studies using different high-resolution regional climate models with large ensemble are recommended.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/4/353/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11040353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/4/353/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11040353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 24 Apr 2025 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | CNH-L: Land-Climate-Water...NSF| CNH-L: Land-Climate-Water Feedbacks and Farmer Decision-Making in an Agricultural SystemAuthors: Moreira, Rodrigo Martins; dos Santos, Bruno César; Biggs, Trent; de Sales, Fernando; +1 AuthorsMoreira, Rodrigo Martins; dos Santos, Bruno César; Biggs, Trent; de Sales, Fernando; Sieber, Stefan;pmid: 38890330
AbstractPrioritizing watershed management interventions relies on delineating homogeneous precipitation regions. In this study, we identify these regions in the Brazilian Legal Amazon based on the magnitude of Sen’s Slope trends using annual precipitation data from September to August, employing the Google Earth Engine platform. Utilizing the silhouette method, we determine four distinct clusters representing zones of homogeneous precipitation patterns. Cluster 0 exhibits a significant median increase in precipitation of 3.20 mm year−1 over the period from 1981 to 2020. Cluster 1 shows a notable increase of 8.13 mm year−1, while Clusters 2 and 3 demonstrate reductions in precipitation of − 1.61 mm year−1 and − 3.87 mm year−1, respectively, all statistically significant. Notably, the region known as the arc of deforestation falls within Cluster 2, indicating a concerning trend of reduced precipitation. Additionally, our analysis reveals significant correlations between Sea Surface Temperature (SST) in various oceanic regions and precipitation patterns over the Brazilian Legal Amazon. Particularly noteworthy is the strong positive correlation with SST in the South Atlantic, while negative correlations are observed with SST in the South Pacific and North Atlantic. These findings provide valuable insights for enhancing climate adaptation strategies in the Brazilian Legal Amazon region.
Scientific Reports arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-63583-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Scientific Reports arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-63583-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Public Library of Science (PLoS) Authors: David E. Rother; Fernando De Sales; Doug Stow; Joe McFadden;Wildfire burn severity has important implications for postfire vegetation recovery and boundary-layer climate. We used a collection of Moderate Resolution Imaging Spectroradiometer (MODIS) datasets to investigate the impact of burn severity (relative differenced Normalized Burn Ratio, RdNBR) on vegetation recovery (Enhanced Vegetation Index, EVI), albedo change, and land surface temperature in seven California ecoregions, including: Southern California Mountains (SCM), Southern California Coast (SCC), Central California Foothills (CCF), Klamath (K), Cascades (C), Eastern Cascades (EC), and Sierra Nevada (SN). A statewide MODIS-derived RdNBR dataset was used to analyze the impact of burn severity on the five-year postfire early-summer averages of each biophysical variable between the years 2003–2020. We found that prefire EVI values were largest, and prefire albedo and temperature were lowest in the K, C, EC, and SN ecoregions. Furthermore, the largest changes between prefire and first-year postfire biophysical response tended to occur in the moderate and high burn severity classes across all ecoregions. First-year postfire albedo decreased in the K, C, EC, and SN but increased in the SCM, SCC, and CCF ecoregions. The greatest decreases, but most rapid recovery, of EVI occurred after high severity fires in all ecoregions. After five-years post-fire, EVI and land surface temperature did not return to prefire levels in any burn severity class in any ecoregion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0274428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0274428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu