- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Chile, Spain, Switzerland, United States, United States, Chile, Ireland, United States, Germany, Spain, BelgiumPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa Rica ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Mirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Wensheng Bu; Lu Yang; Zhaolei Li; Dashuan Tian; Camille E. Defrenne; Enqing Hou; M. Luke McCormack; Tao Yan; Jinsong Wang; Jinsong Wang; Ye Chen; Shuli Niu; Yiqi Luo;doi: 10.1111/nph.17279
pmid: 33586131
Summary Whether and how warming alters functional traits of absorptive plant roots remains to be answered across the globe. Tackling this question is crucial to better understanding terrestrial responses to climate change as fine‐root traits drive many ecosystem processes. We carried out a detailed synthesis of fine‐root trait responses to experimental warming by performing a meta‐analysis of 964 paired observations from 177 publications. Warming increased fine‐root biomass, production, respiration and nitrogen concentration as well as decreased root carbon : nitrogen ratio and nonstructural carbohydrates. Warming effects on fine‐root biomass decreased with greater warming magnitude, especially in short‐term experiments. Furthermore, the positive effect of warming on fine‐root biomass was strongest in deeper soil horizons and in colder and drier regions. Total fine‐root length, morphology, mortality, life span and turnover were unresponsive to warming. Our results highlight the significant changes in fine‐root traits in response to warming as well as the importance of warming magnitude and duration in understanding fine‐root responses. These changes have strong implications for global soil carbon stocks in a warmer world associated with increased root‐derived carbon inputs into deeper soil horizons and increases in fine‐root respiration.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Ning Liu; Quancheng Wang; Ronglei Zhou; Ruiyang Zhang; Dashuan Tian; Paul P. J. Gaffney; Weinan Chen; Dezhao Gan; Zelong Zhang; Shuli Niu; Lei Ma; Jinsong Wang;doi: 10.1111/gcb.17495
pmid: 39235092
AbstractDrained wetlands are thought to be carbon (C) source hotspots, and rewetting is advocated to restore C storage in drained wetlands for climate change mitigation. However, current assessments of wetland C balance mainly focus on vertical fluxes between the land and atmosphere, frequently neglecting lateral carbon fluxes and land‐use effects. Here, we conduct a global synthesis of 893 annual net ecosystem C balance (NECB) measures that include net ecosystem exchange of CO2, along with C input via manure fertilization, and C removal through biomass harvest or hydrological exports of dissolved organic and inorganic carbon, across wetlands of different status and land uses. We find that elevating water table substantially reduces net ecosystem C losses, with the annual NECB decreasing from 2579 (95% interval: 1976 to 3214) kg C ha−1 year−1 in drained wetlands to −422 (−658 to −176) kg C ha−1 year−1 in natural wetlands, and to −934 (−1532 to −399) kg C ha−1 year−1 in rewetted wetlands globally. Climate, land‐use history, and time since water table changes introduce variabilities, with drainage for (sub)tropical agriculture or forestry uses showing high annual C losses, while the net C losses from drained wetlands can continue to affect soil C pools for several decades. Rewetting all types of drained wetlands is needed, particularly for those formerly agriculture‐used (sub)tropical wetlands where net ecosystem C losses can be largely reduced. Our findings suggest that elevating water table is an important initiative to reduce C losses in degraded wetlands, which could contribute to policy decisions for managing wetlands to enhance their C sequestration.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Ruiyang Zhang; Dashuan Tian; Jinsong Wang; Junxiao Pan; Juntao Zhu; Yang Li; Yingjie Yan; Lei Song; Song Wang; Chen Chen; Shuli Niu;doi: 10.1111/gcb.16405
pmid: 36054413
AbstractPlant and microbial diversity are key to determine ecosystem functioning. Despite the well‐known role of local‐scale α diversity in affecting vegetation biomass, the effects of community heterogeneity (β diversity) of plants and soil microbes on above‐ and belowground biomass (AGB and BGB) across contrasting environments still remain unclear. Here, we conducted a dryness‐gradient transect survey over 3000 km across grasslands on the Tibetan Plateau. We found that plant β diversity was more dominant than α diversity in maintaining higher levels of AGB, while soil fungal β diversity was the key driver in enhancing BGB. However, these positive effects of plant and microbial β diversity on AGB and BGB were strongly weakened by increasing climatic dryness, mainly because higher soil available phosphorus caused by increasing dryness reduced both plant and soil fungal β diversities. Overall, these new findings highlight the critical role of above‐ and belowground β diversity in sustaining grassland biomass, raising our awareness to the ecological risks of large‐scale biotic homogenization under future climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Lianhai Wu; Wensheng Bu; Jinsong Wang; Jinsong Wang; Xiuhai Zhao; Chunyu Zhang; Klaus von Gadow;pmid: 27557973
The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m-2 year-1), low-N (N1: 5 g N m-2 year-1), medium-N (N2: 10 g N m-2 year-1), and high-N (N3: 15 g N m-2 year-1), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3-5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the "priming" effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.
Environmental Scienc... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-7474-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-7474-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:IOP Publishing Yang Lu; Jiaowen Pan; Jinsong Wang; Dashuan Tian; Chunyu Zhang; Xiuhai Zhao; Jinglu Hu; Wen Yang; Yingjie Yan; Fangfang Ma; Weinan Chen; Quan Quan; Peiyan Wang; Shuli Niu;Abstract Warming can affect soil microbial respiration by changing microbial biomass and community composition. The responses of soil microbial respiration to warming under experimental conditions are also related to background conditions and the experimental setup, such as warming magnitude, duration, and methods. However, the global pattern of soil microbial respiration in response to warming and underlying mechanisms remain unclear. Here, we conducted a global meta-analysis of the response of soil microbial respiration to warming by synthesizing data from 187 field experiments. We found that experimental warming significantly increased soil microbial respiration and microbial biomass carbon by 11.8% and 6.4%, respectively. The warming-induced increase in microbial carbon decomposition was positively correlated with increased microbial biomass carbon, but not community composition. Moreover, the positive response of soil microbial respiration marginally increased with warming magnitude, particularly in short-term experiments, but soil microbial respiration adapted to higher warming at longer timescales. Warming method did not significantly affect the response of microbial respiration, except for a significant effect with open top chamber warming. In addition, the impact of warming on soil microbial respiration was more pronounced in wetter sites and in sites with lower soil pH and higher soil organic carbon. Our findings suggest that warming stimulates microbial respiration mainly by increasing microbial biomass carbon. We also highlight the importance of the combination of warming magnitude and duration in regulating soil microbial respiration responses, and the dependence of warming effects upon background precipitation and soil conditions. These findings can advance our understanding of soil carbon losses and carbon-climate feedbacks in a warm world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acbecb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acbecb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Quan Quan; Nianpeng He; Ruiyang Zhang; Jinsong Wang; Yiqi Luo; Fangfang Ma; Junxiao Pan; Ruomeng Wang; Congcong Liu; Jiahui Zhang; Yiheng Wang; Bing Song; Zhaolei Li; Qingping Zhou; Guirui Yu; Shuli Niu;AbstractGrowing evidence indicates that plant community structure and traits have changed under climate warming, especially in cold or high-elevation regions. However, the impact of these warming-induced changes on ecosystem carbon sequestration remains unclear. Using a warming experiment on the high-elevation Qinghai-Tibetan Plateau, we found that warming not only increased plant species height but also altered species composition, collectively resulting in a taller plant community associated with increased net ecosystem productivity (NEP). Along a 1,500 km transect on the Plateau, taller plant community promoted NEP and soil carbon through associated chlorophyll content and other photosynthetic traits at the community level. Overall, plant community height as a dominant trait is associated with species composition and regulates ecosystem C sequestration in the high-elevation biome. This trait-based association provides new insights into predicting the direction, magnitude and sensitivity of ecosystem C fluxes in response to climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-024-01705-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-024-01705-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Weinan Chen; Song Wang; Jinsong Wang; Jianyang Xia; Yiqi Luo; Guirui Yu; Shuli Niu;pmid: 37488227
Ecosystem respiration (ER) is among the largest carbon fluxes between the biosphere and the atmosphere. Understanding the temperature response of ER is crucial for predicting the climate change-carbon cycle feedback. However, whether there is an apparent optimum temperature of ER ([Formula: see text]) and how it changes with temperature remain poorly understood. Here we analyse the temperature response curves of ER at 212 sites from global FLUXNET. We find that ER at 183 sites shows parabolic temperature response curves and [Formula: see text] at which ER reaches the maximum exists widely across biomes around the globe. Among the 15 biotic and abiotic variables examined, [Formula: see text] is mostly related to the optimum temperature of gross primary production (GPP, [Formula: see text]) and annual maximum daily temperature (Tmax). In addition, [Formula: see text] linearly increases with Tmax across sites and over vegetation types, suggesting its thermal adaptation. The adaptation magnitude of [Formula: see text], which is measured by the change in [Formula: see text] per unit change in Tmax, is positively correlated with the adaptation magnitude of [Formula: see text]. This study provides evidence of the widespread existence of [Formula: see text] and its thermal adaptation with Tmax across different biomes around the globe. Our findings suggest that carbon cycle models that consider the existence of [Formula: see text] and its adaptation have the potential to more realistically predict terrestrial carbon sequestration in a world with changing climate.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02121-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02121-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fangfang Ma; Yingjie Yan; Jens‐Christian Svenning; Quan Quan; Jinlong Peng; Ruiyang Zhang; Jinsong Wang; Dashuan Tian; Qingping Zhou; Shuli Niu;doi: 10.1002/ecy.4193
pmid: 37882140
AbstractClimate warming, often accompanied by extreme drought events, could have profound effects on both plant community structure and ecosystem functioning. However, how warming interacts with extreme drought to affect community‐ and ecosystem‐level stability remains a largely open question. Using data from a manipulative experiment with three warming treatments in an alpine meadow that experienced one extreme drought event, we investigated how warming modulates resistance and recovery of community structural and ecosystem functional stability in facing with extreme drought. We found warming decreased resistance and recovery of aboveground net primary productivity (ANPP) and structural resistance but increased resistance and recovery of belowground net primary productivity (BNPP), overall net primary productivity (NPP), and structural recovery. The findings highlight the importance of jointly considering above‐ and belowground processes when evaluating ecosystem stability under global warming and extreme climate events. The stability of dominant species, rather than species richness and species asynchrony, was identified as a key predictor of ecosystem functional resistance and recovery, except for BNPP recovery. In addition, structural resistance of common species contributed strongly to the resistance changes in BNPP and NPP. Importantly, community structural resistance and recovery dominated the resistance and recovery of BNPP and NPP, but not for ANPP, suggesting the different mechanisms underlie the maintenance of stability of above‐ versus belowground productivity. This study is among the first to explain that warming modulates ecosystem stability in the face of extreme drought and lay stress on the need to investigate ecological stability at the community level for a more mechanistic understanding of ecosystem stability in response to climate extremes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Public Library of Science (PLoS) Huaijiang He; Song Yang; Haijun Dai; Jinsong Wang; Jinsong Wang; Qiang Zuo; Xiuhai Zhao; Chunyu Zhang; Folega Fousseni; Folega Fousseni;pmid: 29351291
pmc: PMC5774681
La compréhension du budget et de la dynamique du carbone forestier pour la gestion durable des ressources et les fonctions des écosystèmes nécessite une quantification de la biomasse aérienne et souterraine aux niveaux des différentes espèces d'arbres et des peuplements. Dans cette étude, un total de 122 arbres (9-12 par espèce) ont été échantillonnés de manière destructive pour déterminer la biomasse aérienne et souterraine de 12 espèces d'arbres (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis et Ulmus japonica) dans les forêts mixtes de conifères et de feuillus du nord-est de la Chine, une zone de la plus grande forêt naturelle du pays. L'allocation de la biomasse a été examinée et des modèles de biomasse ont été développés en utilisant le diamètre comme variable indépendante pour chaque espèce d'arbre et toutes les espèces combinées. Les résultats ont montré que la plus grande allocation de biomasse de toutes les espèces combinées concernait les tiges (57,1 %), suivies des racines grossières (21,3 %), des branches (18,7 %) et du feuillage (2,9 %). Le modèle transformé en logarithme était statistiquement significatif pour toutes les composantes de la biomasse, bien que la puissance de prédiction était plus élevée pour les modèles spécifiques aux espèces que pour toutes les espèces combinées, les modèles de biomasse générale, et plus élevée pour les tiges, les racines, la biomasse aérienne et la biomasse totale des arbres que pour la biomasse des branches et du feuillage. Ces résultats complètent les études précédentes sur ce type de forêt par des échantillons supplémentaires d'arbres, d'espèces et d'emplacements, et soutiennent la recherche sur la biomasse sur le bilan et la dynamique du carbone forestier par des activités de gestion telles que l'éclaircie et la récolte dans le nord-est de la Chine. Comprender el presupuesto y la dinámica del carbono forestal para la gestión sostenible de los recursos y las funciones de los ecosistemas requiere la cuantificación de la biomasa por encima y por debajo del suelo en cada especie de árbol y nivel de rodal. En este estudio, se tomaron muestras destructivas de un total de 122 árboles (9-12 por especie) para determinar la biomasa sobre y bajo tierra de 12 especies de árboles (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis y Ulmus japonica) en bosques mixtos de coníferas y hojas anchas del noreste de China, un área del bosque natural más grande del país. Se examinó la asignación de biomasa y se desarrollaron modelos de biomasa utilizando el diámetro como variable independiente para especies de árboles individuales y todas las especies combinadas. Los resultados mostraron que la mayor asignación de biomasa de todas las especies combinadas fue en los tallos (57,1%), seguida de la raíz gruesa (21,3%), la rama (18,7%) y el follaje (2,9%). El modelo transformado logarítmicamente fue estadísticamente significativo para todos los componentes de la biomasa, aunque la potencia de predicción fue mayor para los modelos específicos de la especie que para todas las especies combinadas, los modelos generales de biomasa y mayor para los tallos, las raíces, la biomasa aérea y la biomasa total del árbol que para la biomasa de ramas y follaje. Estos hallazgos complementan los estudios anteriores sobre este tipo de bosque con árboles, especies y ubicaciones de muestra adicionales, y apoyan la investigación de la biomasa sobre el presupuesto y la dinámica del carbono forestal mediante actividades de gestión como el aclareo y la cosecha en la parte noreste de China. Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China. يتطلب فهم ميزانية الكربون في الغابات وديناميكيات الإدارة المستدامة للموارد ووظائف النظام الإيكولوجي تحديدًا كميًا للكتلة الحيوية فوق وتحت الأرض على أنواع الأشجار الفردية ومستويات الحامل. في هذه الدراسة، تم أخذ عينات من 122 شجرة (9-12 لكل نوع) بشكل تدميري لتحديد الكتلة الحيوية فوق وتحت الأرض من 12 نوعًا من الأشجار (أيسر ماندشوريكوم، أيسر مونو، بيتولا بلاتيفيلا، كاربينوس كورداتا، فراكسينوس ماندشوريكا، جوجلانز ماندشوريكا، ماكيا أمورينسيس، ب. كوراينسيس، بوبولوس أوسورينسيس، كويركوس منغوليكا، تيليا أمورينسيس، أولموس جابونيكا) في الغابات المختلطة الصنوبرية وعريضة الأوراق في شمال شرق الصين، وهي منطقة من أكبر الغابات الطبيعية في البلاد. تم فحص تخصيص الكتلة الحيوية وتم تطوير نماذج الكتلة الحيوية باستخدام القطر كمتغير مستقل لأنواع الأشجار الفردية وجميع الأنواع مجتمعة. أظهرت النتائج أن أكبر تخصيص للكتلة الحيوية لجميع الأنواع مجتمعة كان على السيقان (57.1 ٪)، يليها الجذر الخشن (21.3 ٪)، والفرع (18.7 ٪)، وأوراق الشجر (2.9 ٪). كان النموذج المحول اللوغاريتمي ذا دلالة إحصائية لجميع مكونات الكتلة الحيوية، على الرغم من أن القدرة على التنبؤ كانت أعلى بالنسبة للنماذج الخاصة بالأنواع مقارنة بجميع الأنواع مجتمعة، ونماذج الكتلة الحيوية العامة، وأعلى بالنسبة للسيقان والجذور والكتلة الحيوية فوق الأرض والكتلة الحيوية الإجمالية للأشجار مقارنة بالكتلة الحيوية للفرع وأوراق الشجر. تكمل هذه النتائج الدراسات السابقة حول هذا النوع من الغابات من خلال عينات إضافية من الأشجار والأنواع والمواقع، وتدعم أبحاث الكتلة الحيوية حول ميزانية وديناميكيات الكربون في الغابات من خلال أنشطة الإدارة مثل التخفيف والحصاد في الجزء الشمالي الشرقي من الصين.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0186226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0186226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Chile, Spain, Switzerland, United States, United States, Chile, Ireland, United States, Germany, Spain, BelgiumPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa Rica ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Mirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Wensheng Bu; Lu Yang; Zhaolei Li; Dashuan Tian; Camille E. Defrenne; Enqing Hou; M. Luke McCormack; Tao Yan; Jinsong Wang; Jinsong Wang; Ye Chen; Shuli Niu; Yiqi Luo;doi: 10.1111/nph.17279
pmid: 33586131
Summary Whether and how warming alters functional traits of absorptive plant roots remains to be answered across the globe. Tackling this question is crucial to better understanding terrestrial responses to climate change as fine‐root traits drive many ecosystem processes. We carried out a detailed synthesis of fine‐root trait responses to experimental warming by performing a meta‐analysis of 964 paired observations from 177 publications. Warming increased fine‐root biomass, production, respiration and nitrogen concentration as well as decreased root carbon : nitrogen ratio and nonstructural carbohydrates. Warming effects on fine‐root biomass decreased with greater warming magnitude, especially in short‐term experiments. Furthermore, the positive effect of warming on fine‐root biomass was strongest in deeper soil horizons and in colder and drier regions. Total fine‐root length, morphology, mortality, life span and turnover were unresponsive to warming. Our results highlight the significant changes in fine‐root traits in response to warming as well as the importance of warming magnitude and duration in understanding fine‐root responses. These changes have strong implications for global soil carbon stocks in a warmer world associated with increased root‐derived carbon inputs into deeper soil horizons and increases in fine‐root respiration.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Ning Liu; Quancheng Wang; Ronglei Zhou; Ruiyang Zhang; Dashuan Tian; Paul P. J. Gaffney; Weinan Chen; Dezhao Gan; Zelong Zhang; Shuli Niu; Lei Ma; Jinsong Wang;doi: 10.1111/gcb.17495
pmid: 39235092
AbstractDrained wetlands are thought to be carbon (C) source hotspots, and rewetting is advocated to restore C storage in drained wetlands for climate change mitigation. However, current assessments of wetland C balance mainly focus on vertical fluxes between the land and atmosphere, frequently neglecting lateral carbon fluxes and land‐use effects. Here, we conduct a global synthesis of 893 annual net ecosystem C balance (NECB) measures that include net ecosystem exchange of CO2, along with C input via manure fertilization, and C removal through biomass harvest or hydrological exports of dissolved organic and inorganic carbon, across wetlands of different status and land uses. We find that elevating water table substantially reduces net ecosystem C losses, with the annual NECB decreasing from 2579 (95% interval: 1976 to 3214) kg C ha−1 year−1 in drained wetlands to −422 (−658 to −176) kg C ha−1 year−1 in natural wetlands, and to −934 (−1532 to −399) kg C ha−1 year−1 in rewetted wetlands globally. Climate, land‐use history, and time since water table changes introduce variabilities, with drainage for (sub)tropical agriculture or forestry uses showing high annual C losses, while the net C losses from drained wetlands can continue to affect soil C pools for several decades. Rewetting all types of drained wetlands is needed, particularly for those formerly agriculture‐used (sub)tropical wetlands where net ecosystem C losses can be largely reduced. Our findings suggest that elevating water table is an important initiative to reduce C losses in degraded wetlands, which could contribute to policy decisions for managing wetlands to enhance their C sequestration.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Ruiyang Zhang; Dashuan Tian; Jinsong Wang; Junxiao Pan; Juntao Zhu; Yang Li; Yingjie Yan; Lei Song; Song Wang; Chen Chen; Shuli Niu;doi: 10.1111/gcb.16405
pmid: 36054413
AbstractPlant and microbial diversity are key to determine ecosystem functioning. Despite the well‐known role of local‐scale α diversity in affecting vegetation biomass, the effects of community heterogeneity (β diversity) of plants and soil microbes on above‐ and belowground biomass (AGB and BGB) across contrasting environments still remain unclear. Here, we conducted a dryness‐gradient transect survey over 3000 km across grasslands on the Tibetan Plateau. We found that plant β diversity was more dominant than α diversity in maintaining higher levels of AGB, while soil fungal β diversity was the key driver in enhancing BGB. However, these positive effects of plant and microbial β diversity on AGB and BGB were strongly weakened by increasing climatic dryness, mainly because higher soil available phosphorus caused by increasing dryness reduced both plant and soil fungal β diversities. Overall, these new findings highlight the critical role of above‐ and belowground β diversity in sustaining grassland biomass, raising our awareness to the ecological risks of large‐scale biotic homogenization under future climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Lianhai Wu; Wensheng Bu; Jinsong Wang; Jinsong Wang; Xiuhai Zhao; Chunyu Zhang; Klaus von Gadow;pmid: 27557973
The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m-2 year-1), low-N (N1: 5 g N m-2 year-1), medium-N (N2: 10 g N m-2 year-1), and high-N (N3: 15 g N m-2 year-1), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3-5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the "priming" effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.
Environmental Scienc... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-7474-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-7474-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:IOP Publishing Yang Lu; Jiaowen Pan; Jinsong Wang; Dashuan Tian; Chunyu Zhang; Xiuhai Zhao; Jinglu Hu; Wen Yang; Yingjie Yan; Fangfang Ma; Weinan Chen; Quan Quan; Peiyan Wang; Shuli Niu;Abstract Warming can affect soil microbial respiration by changing microbial biomass and community composition. The responses of soil microbial respiration to warming under experimental conditions are also related to background conditions and the experimental setup, such as warming magnitude, duration, and methods. However, the global pattern of soil microbial respiration in response to warming and underlying mechanisms remain unclear. Here, we conducted a global meta-analysis of the response of soil microbial respiration to warming by synthesizing data from 187 field experiments. We found that experimental warming significantly increased soil microbial respiration and microbial biomass carbon by 11.8% and 6.4%, respectively. The warming-induced increase in microbial carbon decomposition was positively correlated with increased microbial biomass carbon, but not community composition. Moreover, the positive response of soil microbial respiration marginally increased with warming magnitude, particularly in short-term experiments, but soil microbial respiration adapted to higher warming at longer timescales. Warming method did not significantly affect the response of microbial respiration, except for a significant effect with open top chamber warming. In addition, the impact of warming on soil microbial respiration was more pronounced in wetter sites and in sites with lower soil pH and higher soil organic carbon. Our findings suggest that warming stimulates microbial respiration mainly by increasing microbial biomass carbon. We also highlight the importance of the combination of warming magnitude and duration in regulating soil microbial respiration responses, and the dependence of warming effects upon background precipitation and soil conditions. These findings can advance our understanding of soil carbon losses and carbon-climate feedbacks in a warm world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acbecb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/acbecb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Quan Quan; Nianpeng He; Ruiyang Zhang; Jinsong Wang; Yiqi Luo; Fangfang Ma; Junxiao Pan; Ruomeng Wang; Congcong Liu; Jiahui Zhang; Yiheng Wang; Bing Song; Zhaolei Li; Qingping Zhou; Guirui Yu; Shuli Niu;AbstractGrowing evidence indicates that plant community structure and traits have changed under climate warming, especially in cold or high-elevation regions. However, the impact of these warming-induced changes on ecosystem carbon sequestration remains unclear. Using a warming experiment on the high-elevation Qinghai-Tibetan Plateau, we found that warming not only increased plant species height but also altered species composition, collectively resulting in a taller plant community associated with increased net ecosystem productivity (NEP). Along a 1,500 km transect on the Plateau, taller plant community promoted NEP and soil carbon through associated chlorophyll content and other photosynthetic traits at the community level. Overall, plant community height as a dominant trait is associated with species composition and regulates ecosystem C sequestration in the high-elevation biome. This trait-based association provides new insights into predicting the direction, magnitude and sensitivity of ecosystem C fluxes in response to climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-024-01705-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-024-01705-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Weinan Chen; Song Wang; Jinsong Wang; Jianyang Xia; Yiqi Luo; Guirui Yu; Shuli Niu;pmid: 37488227
Ecosystem respiration (ER) is among the largest carbon fluxes between the biosphere and the atmosphere. Understanding the temperature response of ER is crucial for predicting the climate change-carbon cycle feedback. However, whether there is an apparent optimum temperature of ER ([Formula: see text]) and how it changes with temperature remain poorly understood. Here we analyse the temperature response curves of ER at 212 sites from global FLUXNET. We find that ER at 183 sites shows parabolic temperature response curves and [Formula: see text] at which ER reaches the maximum exists widely across biomes around the globe. Among the 15 biotic and abiotic variables examined, [Formula: see text] is mostly related to the optimum temperature of gross primary production (GPP, [Formula: see text]) and annual maximum daily temperature (Tmax). In addition, [Formula: see text] linearly increases with Tmax across sites and over vegetation types, suggesting its thermal adaptation. The adaptation magnitude of [Formula: see text], which is measured by the change in [Formula: see text] per unit change in Tmax, is positively correlated with the adaptation magnitude of [Formula: see text]. This study provides evidence of the widespread existence of [Formula: see text] and its thermal adaptation with Tmax across different biomes around the globe. Our findings suggest that carbon cycle models that consider the existence of [Formula: see text] and its adaptation have the potential to more realistically predict terrestrial carbon sequestration in a world with changing climate.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02121-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02121-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fangfang Ma; Yingjie Yan; Jens‐Christian Svenning; Quan Quan; Jinlong Peng; Ruiyang Zhang; Jinsong Wang; Dashuan Tian; Qingping Zhou; Shuli Niu;doi: 10.1002/ecy.4193
pmid: 37882140
AbstractClimate warming, often accompanied by extreme drought events, could have profound effects on both plant community structure and ecosystem functioning. However, how warming interacts with extreme drought to affect community‐ and ecosystem‐level stability remains a largely open question. Using data from a manipulative experiment with three warming treatments in an alpine meadow that experienced one extreme drought event, we investigated how warming modulates resistance and recovery of community structural and ecosystem functional stability in facing with extreme drought. We found warming decreased resistance and recovery of aboveground net primary productivity (ANPP) and structural resistance but increased resistance and recovery of belowground net primary productivity (BNPP), overall net primary productivity (NPP), and structural recovery. The findings highlight the importance of jointly considering above‐ and belowground processes when evaluating ecosystem stability under global warming and extreme climate events. The stability of dominant species, rather than species richness and species asynchrony, was identified as a key predictor of ecosystem functional resistance and recovery, except for BNPP recovery. In addition, structural resistance of common species contributed strongly to the resistance changes in BNPP and NPP. Importantly, community structural resistance and recovery dominated the resistance and recovery of BNPP and NPP, but not for ANPP, suggesting the different mechanisms underlie the maintenance of stability of above‐ versus belowground productivity. This study is among the first to explain that warming modulates ecosystem stability in the face of extreme drought and lay stress on the need to investigate ecological stability at the community level for a more mechanistic understanding of ecosystem stability in response to climate extremes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Public Library of Science (PLoS) Huaijiang He; Song Yang; Haijun Dai; Jinsong Wang; Jinsong Wang; Qiang Zuo; Xiuhai Zhao; Chunyu Zhang; Folega Fousseni; Folega Fousseni;pmid: 29351291
pmc: PMC5774681
La compréhension du budget et de la dynamique du carbone forestier pour la gestion durable des ressources et les fonctions des écosystèmes nécessite une quantification de la biomasse aérienne et souterraine aux niveaux des différentes espèces d'arbres et des peuplements. Dans cette étude, un total de 122 arbres (9-12 par espèce) ont été échantillonnés de manière destructive pour déterminer la biomasse aérienne et souterraine de 12 espèces d'arbres (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis et Ulmus japonica) dans les forêts mixtes de conifères et de feuillus du nord-est de la Chine, une zone de la plus grande forêt naturelle du pays. L'allocation de la biomasse a été examinée et des modèles de biomasse ont été développés en utilisant le diamètre comme variable indépendante pour chaque espèce d'arbre et toutes les espèces combinées. Les résultats ont montré que la plus grande allocation de biomasse de toutes les espèces combinées concernait les tiges (57,1 %), suivies des racines grossières (21,3 %), des branches (18,7 %) et du feuillage (2,9 %). Le modèle transformé en logarithme était statistiquement significatif pour toutes les composantes de la biomasse, bien que la puissance de prédiction était plus élevée pour les modèles spécifiques aux espèces que pour toutes les espèces combinées, les modèles de biomasse générale, et plus élevée pour les tiges, les racines, la biomasse aérienne et la biomasse totale des arbres que pour la biomasse des branches et du feuillage. Ces résultats complètent les études précédentes sur ce type de forêt par des échantillons supplémentaires d'arbres, d'espèces et d'emplacements, et soutiennent la recherche sur la biomasse sur le bilan et la dynamique du carbone forestier par des activités de gestion telles que l'éclaircie et la récolte dans le nord-est de la Chine. Comprender el presupuesto y la dinámica del carbono forestal para la gestión sostenible de los recursos y las funciones de los ecosistemas requiere la cuantificación de la biomasa por encima y por debajo del suelo en cada especie de árbol y nivel de rodal. En este estudio, se tomaron muestras destructivas de un total de 122 árboles (9-12 por especie) para determinar la biomasa sobre y bajo tierra de 12 especies de árboles (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis y Ulmus japonica) en bosques mixtos de coníferas y hojas anchas del noreste de China, un área del bosque natural más grande del país. Se examinó la asignación de biomasa y se desarrollaron modelos de biomasa utilizando el diámetro como variable independiente para especies de árboles individuales y todas las especies combinadas. Los resultados mostraron que la mayor asignación de biomasa de todas las especies combinadas fue en los tallos (57,1%), seguida de la raíz gruesa (21,3%), la rama (18,7%) y el follaje (2,9%). El modelo transformado logarítmicamente fue estadísticamente significativo para todos los componentes de la biomasa, aunque la potencia de predicción fue mayor para los modelos específicos de la especie que para todas las especies combinadas, los modelos generales de biomasa y mayor para los tallos, las raíces, la biomasa aérea y la biomasa total del árbol que para la biomasa de ramas y follaje. Estos hallazgos complementan los estudios anteriores sobre este tipo de bosque con árboles, especies y ubicaciones de muestra adicionales, y apoyan la investigación de la biomasa sobre el presupuesto y la dinámica del carbono forestal mediante actividades de gestión como el aclareo y la cosecha en la parte noreste de China. Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China. يتطلب فهم ميزانية الكربون في الغابات وديناميكيات الإدارة المستدامة للموارد ووظائف النظام الإيكولوجي تحديدًا كميًا للكتلة الحيوية فوق وتحت الأرض على أنواع الأشجار الفردية ومستويات الحامل. في هذه الدراسة، تم أخذ عينات من 122 شجرة (9-12 لكل نوع) بشكل تدميري لتحديد الكتلة الحيوية فوق وتحت الأرض من 12 نوعًا من الأشجار (أيسر ماندشوريكوم، أيسر مونو، بيتولا بلاتيفيلا، كاربينوس كورداتا، فراكسينوس ماندشوريكا، جوجلانز ماندشوريكا، ماكيا أمورينسيس، ب. كوراينسيس، بوبولوس أوسورينسيس، كويركوس منغوليكا، تيليا أمورينسيس، أولموس جابونيكا) في الغابات المختلطة الصنوبرية وعريضة الأوراق في شمال شرق الصين، وهي منطقة من أكبر الغابات الطبيعية في البلاد. تم فحص تخصيص الكتلة الحيوية وتم تطوير نماذج الكتلة الحيوية باستخدام القطر كمتغير مستقل لأنواع الأشجار الفردية وجميع الأنواع مجتمعة. أظهرت النتائج أن أكبر تخصيص للكتلة الحيوية لجميع الأنواع مجتمعة كان على السيقان (57.1 ٪)، يليها الجذر الخشن (21.3 ٪)، والفرع (18.7 ٪)، وأوراق الشجر (2.9 ٪). كان النموذج المحول اللوغاريتمي ذا دلالة إحصائية لجميع مكونات الكتلة الحيوية، على الرغم من أن القدرة على التنبؤ كانت أعلى بالنسبة للنماذج الخاصة بالأنواع مقارنة بجميع الأنواع مجتمعة، ونماذج الكتلة الحيوية العامة، وأعلى بالنسبة للسيقان والجذور والكتلة الحيوية فوق الأرض والكتلة الحيوية الإجمالية للأشجار مقارنة بالكتلة الحيوية للفرع وأوراق الشجر. تكمل هذه النتائج الدراسات السابقة حول هذا النوع من الغابات من خلال عينات إضافية من الأشجار والأنواع والمواقع، وتدعم أبحاث الكتلة الحيوية حول ميزانية وديناميكيات الكربون في الغابات من خلال أنشطة الإدارة مثل التخفيف والحصاد في الجزء الشمالي الشرقي من الصين.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0186226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0186226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu