
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fine‐root functional trait responses to experimental warming: a global meta‐analysis

doi: 10.1111/nph.17279
pmid: 33586131
Summary Whether and how warming alters functional traits of absorptive plant roots remains to be answered across the globe. Tackling this question is crucial to better understanding terrestrial responses to climate change as fine‐root traits drive many ecosystem processes. We carried out a detailed synthesis of fine‐root trait responses to experimental warming by performing a meta‐analysis of 964 paired observations from 177 publications. Warming increased fine‐root biomass, production, respiration and nitrogen concentration as well as decreased root carbon : nitrogen ratio and nonstructural carbohydrates. Warming effects on fine‐root biomass decreased with greater warming magnitude, especially in short‐term experiments. Furthermore, the positive effect of warming on fine‐root biomass was strongest in deeper soil horizons and in colder and drier regions. Total fine‐root length, morphology, mortality, life span and turnover were unresponsive to warming. Our results highlight the significant changes in fine‐root traits in response to warming as well as the importance of warming magnitude and duration in understanding fine‐root responses. These changes have strong implications for global soil carbon stocks in a warmer world associated with increased root‐derived carbon inputs into deeper soil horizons and increases in fine‐root respiration.
- Oak Ridge National Laboratory United States
- Lanzhou University China (People's Republic of)
- Shandong Agricultural University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Northern Arizona University United States
Soil, Nitrogen, Biomass, Global Warming, Plant Roots, Ecosystem
Soil, Nitrogen, Biomass, Global Warming, Plant Roots, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
