- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Scott E. Nielsen; David R. Roberts; Gordon B. Stenhouse;doi: 10.1890/13-0829.1
pmid: 25154102
Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability forUrsus arctos(grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence–absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These includedHedysarum alpinum(alpine sweet vetch), a critical spring and autumn root‐digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears:Empetrum nigrum(crowberry),Vaccinium scoparium(grouseberry), andFragaria virginiana(strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human–bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-0829.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-0829.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Scott E. Nielsen; David R. Roberts; Gordon B. Stenhouse;doi: 10.1890/13-0829.1
pmid: 25154102
Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability forUrsus arctos(grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence–absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These includedHedysarum alpinum(alpine sweet vetch), a critical spring and autumn root‐digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears:Empetrum nigrum(crowberry),Vaccinium scoparium(grouseberry), andFragaria virginiana(strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human–bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-0829.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-0829.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Carlos Carroll; David R. Roberts; Julia L. Michalak; Joshua J. Lawler; Scott E. Nielsen; Diana Stralberg; Andreas Hamann; Brad H. Mcrae; Tongli Wang;doi: 10.1111/gcb.13679
pmid: 28267245
AbstractAs most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse‐resolution velocity metrics can be combined with fine‐resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro‐ and microrefugia that in combination maximize both transient and long‐term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Carlos Carroll; David R. Roberts; Julia L. Michalak; Joshua J. Lawler; Scott E. Nielsen; Diana Stralberg; Andreas Hamann; Brad H. Mcrae; Tongli Wang;doi: 10.1111/gcb.13679
pmid: 28267245
AbstractAs most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse‐resolution velocity metrics can be combined with fine‐resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro‐ and microrefugia that in combination maximize both transient and long‐term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Wiley Funded by:NSERCNSERCAuthors: Isaac-Renton, Miriam G.; Roberts, David R.; Hamann, Andreas; Spiecker, Heinrich;doi: 10.1111/gcb.12604
pmid: 24737595
AbstractWe evaluate genetic test plantations of North American Douglas‐fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta‐analysis is based on long‐term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north–south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas‐fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas‐fir provenances in plantation forestry throughout Western and Central Europe.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Wiley Funded by:NSERCNSERCAuthors: Isaac-Renton, Miriam G.; Roberts, David R.; Hamann, Andreas; Spiecker, Heinrich;doi: 10.1111/gcb.12604
pmid: 24737595
AbstractWe evaluate genetic test plantations of North American Douglas‐fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta‐analysis is based on long‐term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north–south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas‐fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas‐fir provenances in plantation forestry throughout Western and Central Europe.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Carlos Carroll; Sean A. Parks; Solomon Z. Dobrowski; David R. Roberts;doi: 10.1111/gcb.14373
pmid: 29963741
AbstractAs climatic conditions shift in coming decades, persistence of many populations will depend on their ability to colonize habitat newly suitable for their climatic requirements. Opportunities for such range shifts may be limited unless areas that facilitate dispersal under climate change are identified and protected from land uses that impede movement. While many climate adaptation strategies focus on identifying refugia, this study is the first to characterize areas which merit protection for their role in promoting climate connectivity at a continental extent. We identified climate connectivity areas across North America by delineating paths between current climate types and their future analogs that avoided nonanalogous climates, and used centrality metrics to rank the contribution of each location to facilitating dispersal across the landscape. The distribution of connectivity areas was influenced by climatic and topographic factors at multiple spatial scales. Results were robust to uncertainty in the magnitude of future climate change arising from differing emissions scenarios and general circulation models, but sensitive to analysis extent and assumptions concerning dispersal behavior and maximum dispersal distance. Paths were funneled along north‐south trending passes and valley systems and away from areas of novel and disappearing climates. Climate connectivity areas, where many potential dispersal paths overlapped, were distinct from refugia and thus poorly captured by many existing conservation strategies. Existing protected areas with high connectivity values were found in southern Mexico, the southwestern US, and western and arctic Canada and Alaska. Ecoregions within the Isthmus of Tehuantepec, Great Plains, eastern temperate forests, high Arctic, and western Canadian Cordillera hold important climate connectivity areas which merit increased conservation focus due to anthropogenic pressures or current low levels of protection. Our coarse‐filter climate‐type‐based results complement and contextualize species‐specific analyses and add a missing dimension to climate adaptation planning by identifying landscape features which promote connectivity among refugia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Carlos Carroll; Sean A. Parks; Solomon Z. Dobrowski; David R. Roberts;doi: 10.1111/gcb.14373
pmid: 29963741
AbstractAs climatic conditions shift in coming decades, persistence of many populations will depend on their ability to colonize habitat newly suitable for their climatic requirements. Opportunities for such range shifts may be limited unless areas that facilitate dispersal under climate change are identified and protected from land uses that impede movement. While many climate adaptation strategies focus on identifying refugia, this study is the first to characterize areas which merit protection for their role in promoting climate connectivity at a continental extent. We identified climate connectivity areas across North America by delineating paths between current climate types and their future analogs that avoided nonanalogous climates, and used centrality metrics to rank the contribution of each location to facilitating dispersal across the landscape. The distribution of connectivity areas was influenced by climatic and topographic factors at multiple spatial scales. Results were robust to uncertainty in the magnitude of future climate change arising from differing emissions scenarios and general circulation models, but sensitive to analysis extent and assumptions concerning dispersal behavior and maximum dispersal distance. Paths were funneled along north‐south trending passes and valley systems and away from areas of novel and disappearing climates. Climate connectivity areas, where many potential dispersal paths overlapped, were distinct from refugia and thus poorly captured by many existing conservation strategies. Existing protected areas with high connectivity values were found in southern Mexico, the southwestern US, and western and arctic Canada and Alaska. Ecoregions within the Isthmus of Tehuantepec, Great Plains, eastern temperate forests, high Arctic, and western Canadian Cordillera hold important climate connectivity areas which merit increased conservation focus due to anthropogenic pressures or current low levels of protection. Our coarse‐filter climate‐type‐based results complement and contextualize species‐specific analyses and add a missing dimension to climate adaptation planning by identifying landscape features which promote connectivity among refugia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley David R. Roberts; Scott E. Nielsen; Carlos Carroll; Quinn E. Barber; Andreas Hamann;doi: 10.1111/gcb.12736
pmid: 25310933
AbstractThe velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul‐de‐sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present‐to‐future velocities) and management of species populations (future‐to‐present velocities).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 185 citations 185 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley David R. Roberts; Scott E. Nielsen; Carlos Carroll; Quinn E. Barber; Andreas Hamann;doi: 10.1111/gcb.12736
pmid: 25310933
AbstractThe velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul‐de‐sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present‐to‐future velocities) and management of species populations (future‐to‐present velocities).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 185 citations 185 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley David R. Roberts; David R. Roberts; Julia Michalak; Joshua J. Lawler; Carlos Carroll;doi: 10.1111/cobi.13130
pmid: 29744936
AbstractAs evidenced by past climatic refugia, locations projected to harbor remnants of present‐day climates may serve as critical refugia for current biodiversity in the face of modern climate change. We mapped potential climatic refugia in the future across North America, defined as locations with increasingly rare climatic conditions. We identified these locations by tracking projected changes in the size and distribution of climate analogs over time. We used biologically derived thresholds to define analogs and tested the impacts of dispersal limitation with 4 distances to limit analog searches. We identified at most 12% of North America as potential climatic refugia. Refugia extent varied depending on the analog threshold, dispersal distance, and climate projection. However, in all cases refugia were concentrated at high elevations and in topographically complex regions. Refugia identified using different climate projections were largely nested, suggesting that identified refugia were relatively robust to climate‐projection selection. Existing conservation areas cover approximately 10% of North America and yet protected up to 25% of identified refugia, indicating that protected areas disproportionately include refugia. Refugia located at lower latitudes (≤40°N) and slightly lower elevations (approximately 2500 m) were more likely to be unprotected. Based on our results, a 23% expansion of the protected‐area network would be sufficient to protect the refugia present under all 3 climate projections we explored. We believe these refugia are high conservation priorities due to their potential to harbor rare species in the future. However, these locations are simultaneously highly vulnerable to climate change over the long term. These refugia contracted substantially between the 2050s and the 2080s, which supports the idea that the pace of climate change will strongly determine the availability and effectiveness of refugia for protecting today's biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley David R. Roberts; David R. Roberts; Julia Michalak; Joshua J. Lawler; Carlos Carroll;doi: 10.1111/cobi.13130
pmid: 29744936
AbstractAs evidenced by past climatic refugia, locations projected to harbor remnants of present‐day climates may serve as critical refugia for current biodiversity in the face of modern climate change. We mapped potential climatic refugia in the future across North America, defined as locations with increasingly rare climatic conditions. We identified these locations by tracking projected changes in the size and distribution of climate analogs over time. We used biologically derived thresholds to define analogs and tested the impacts of dispersal limitation with 4 distances to limit analog searches. We identified at most 12% of North America as potential climatic refugia. Refugia extent varied depending on the analog threshold, dispersal distance, and climate projection. However, in all cases refugia were concentrated at high elevations and in topographically complex regions. Refugia identified using different climate projections were largely nested, suggesting that identified refugia were relatively robust to climate‐projection selection. Existing conservation areas cover approximately 10% of North America and yet protected up to 25% of identified refugia, indicating that protected areas disproportionately include refugia. Refugia located at lower latitudes (≤40°N) and slightly lower elevations (approximately 2500 m) were more likely to be unprotected. Based on our results, a 23% expansion of the protected‐area network would be sufficient to protect the refugia present under all 3 climate projections we explored. We believe these refugia are high conservation priorities due to their potential to harbor rare species in the future. However, these locations are simultaneously highly vulnerable to climate change over the long term. These refugia contracted substantially between the 2050s and the 2080s, which supports the idea that the pace of climate change will strongly determine the availability and effectiveness of refugia for protecting today's biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 GermanyPublisher:Public Library of Science (PLoS) Authors: Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas;Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 GermanyPublisher:Public Library of Science (PLoS) Authors: Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas;Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:The Royal Society Authors: David R. Roberts; Andreas Hamann;North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2= 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.2903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.2903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:The Royal Society Authors: David R. Roberts; Andreas Hamann;North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2= 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.2903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.2903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Scott E. Nielsen; David R. Roberts; Gordon B. Stenhouse;doi: 10.1890/13-0829.1
pmid: 25154102
Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability forUrsus arctos(grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence–absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These includedHedysarum alpinum(alpine sweet vetch), a critical spring and autumn root‐digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears:Empetrum nigrum(crowberry),Vaccinium scoparium(grouseberry), andFragaria virginiana(strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human–bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-0829.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-0829.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Scott E. Nielsen; David R. Roberts; Gordon B. Stenhouse;doi: 10.1890/13-0829.1
pmid: 25154102
Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability forUrsus arctos(grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence–absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These includedHedysarum alpinum(alpine sweet vetch), a critical spring and autumn root‐digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears:Empetrum nigrum(crowberry),Vaccinium scoparium(grouseberry), andFragaria virginiana(strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human–bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-0829.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-0829.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Carlos Carroll; David R. Roberts; Julia L. Michalak; Joshua J. Lawler; Scott E. Nielsen; Diana Stralberg; Andreas Hamann; Brad H. Mcrae; Tongli Wang;doi: 10.1111/gcb.13679
pmid: 28267245
AbstractAs most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse‐resolution velocity metrics can be combined with fine‐resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro‐ and microrefugia that in combination maximize both transient and long‐term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Carlos Carroll; David R. Roberts; Julia L. Michalak; Joshua J. Lawler; Scott E. Nielsen; Diana Stralberg; Andreas Hamann; Brad H. Mcrae; Tongli Wang;doi: 10.1111/gcb.13679
pmid: 28267245
AbstractAs most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse‐resolution velocity metrics can be combined with fine‐resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro‐ and microrefugia that in combination maximize both transient and long‐term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Wiley Funded by:NSERCNSERCAuthors: Isaac-Renton, Miriam G.; Roberts, David R.; Hamann, Andreas; Spiecker, Heinrich;doi: 10.1111/gcb.12604
pmid: 24737595
AbstractWe evaluate genetic test plantations of North American Douglas‐fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta‐analysis is based on long‐term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north–south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas‐fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas‐fir provenances in plantation forestry throughout Western and Central Europe.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Wiley Funded by:NSERCNSERCAuthors: Isaac-Renton, Miriam G.; Roberts, David R.; Hamann, Andreas; Spiecker, Heinrich;doi: 10.1111/gcb.12604
pmid: 24737595
AbstractWe evaluate genetic test plantations of North American Douglas‐fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta‐analysis is based on long‐term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north–south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas‐fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas‐fir provenances in plantation forestry throughout Western and Central Europe.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Carlos Carroll; Sean A. Parks; Solomon Z. Dobrowski; David R. Roberts;doi: 10.1111/gcb.14373
pmid: 29963741
AbstractAs climatic conditions shift in coming decades, persistence of many populations will depend on their ability to colonize habitat newly suitable for their climatic requirements. Opportunities for such range shifts may be limited unless areas that facilitate dispersal under climate change are identified and protected from land uses that impede movement. While many climate adaptation strategies focus on identifying refugia, this study is the first to characterize areas which merit protection for their role in promoting climate connectivity at a continental extent. We identified climate connectivity areas across North America by delineating paths between current climate types and their future analogs that avoided nonanalogous climates, and used centrality metrics to rank the contribution of each location to facilitating dispersal across the landscape. The distribution of connectivity areas was influenced by climatic and topographic factors at multiple spatial scales. Results were robust to uncertainty in the magnitude of future climate change arising from differing emissions scenarios and general circulation models, but sensitive to analysis extent and assumptions concerning dispersal behavior and maximum dispersal distance. Paths were funneled along north‐south trending passes and valley systems and away from areas of novel and disappearing climates. Climate connectivity areas, where many potential dispersal paths overlapped, were distinct from refugia and thus poorly captured by many existing conservation strategies. Existing protected areas with high connectivity values were found in southern Mexico, the southwestern US, and western and arctic Canada and Alaska. Ecoregions within the Isthmus of Tehuantepec, Great Plains, eastern temperate forests, high Arctic, and western Canadian Cordillera hold important climate connectivity areas which merit increased conservation focus due to anthropogenic pressures or current low levels of protection. Our coarse‐filter climate‐type‐based results complement and contextualize species‐specific analyses and add a missing dimension to climate adaptation planning by identifying landscape features which promote connectivity among refugia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Carlos Carroll; Sean A. Parks; Solomon Z. Dobrowski; David R. Roberts;doi: 10.1111/gcb.14373
pmid: 29963741
AbstractAs climatic conditions shift in coming decades, persistence of many populations will depend on their ability to colonize habitat newly suitable for their climatic requirements. Opportunities for such range shifts may be limited unless areas that facilitate dispersal under climate change are identified and protected from land uses that impede movement. While many climate adaptation strategies focus on identifying refugia, this study is the first to characterize areas which merit protection for their role in promoting climate connectivity at a continental extent. We identified climate connectivity areas across North America by delineating paths between current climate types and their future analogs that avoided nonanalogous climates, and used centrality metrics to rank the contribution of each location to facilitating dispersal across the landscape. The distribution of connectivity areas was influenced by climatic and topographic factors at multiple spatial scales. Results were robust to uncertainty in the magnitude of future climate change arising from differing emissions scenarios and general circulation models, but sensitive to analysis extent and assumptions concerning dispersal behavior and maximum dispersal distance. Paths were funneled along north‐south trending passes and valley systems and away from areas of novel and disappearing climates. Climate connectivity areas, where many potential dispersal paths overlapped, were distinct from refugia and thus poorly captured by many existing conservation strategies. Existing protected areas with high connectivity values were found in southern Mexico, the southwestern US, and western and arctic Canada and Alaska. Ecoregions within the Isthmus of Tehuantepec, Great Plains, eastern temperate forests, high Arctic, and western Canadian Cordillera hold important climate connectivity areas which merit increased conservation focus due to anthropogenic pressures or current low levels of protection. Our coarse‐filter climate‐type‐based results complement and contextualize species‐specific analyses and add a missing dimension to climate adaptation planning by identifying landscape features which promote connectivity among refugia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley David R. Roberts; Scott E. Nielsen; Carlos Carroll; Quinn E. Barber; Andreas Hamann;doi: 10.1111/gcb.12736
pmid: 25310933
AbstractThe velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul‐de‐sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present‐to‐future velocities) and management of species populations (future‐to‐present velocities).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 185 citations 185 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley David R. Roberts; Scott E. Nielsen; Carlos Carroll; Quinn E. Barber; Andreas Hamann;doi: 10.1111/gcb.12736
pmid: 25310933
AbstractThe velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul‐de‐sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present‐to‐future velocities) and management of species populations (future‐to‐present velocities).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 185 citations 185 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley David R. Roberts; David R. Roberts; Julia Michalak; Joshua J. Lawler; Carlos Carroll;doi: 10.1111/cobi.13130
pmid: 29744936
AbstractAs evidenced by past climatic refugia, locations projected to harbor remnants of present‐day climates may serve as critical refugia for current biodiversity in the face of modern climate change. We mapped potential climatic refugia in the future across North America, defined as locations with increasingly rare climatic conditions. We identified these locations by tracking projected changes in the size and distribution of climate analogs over time. We used biologically derived thresholds to define analogs and tested the impacts of dispersal limitation with 4 distances to limit analog searches. We identified at most 12% of North America as potential climatic refugia. Refugia extent varied depending on the analog threshold, dispersal distance, and climate projection. However, in all cases refugia were concentrated at high elevations and in topographically complex regions. Refugia identified using different climate projections were largely nested, suggesting that identified refugia were relatively robust to climate‐projection selection. Existing conservation areas cover approximately 10% of North America and yet protected up to 25% of identified refugia, indicating that protected areas disproportionately include refugia. Refugia located at lower latitudes (≤40°N) and slightly lower elevations (approximately 2500 m) were more likely to be unprotected. Based on our results, a 23% expansion of the protected‐area network would be sufficient to protect the refugia present under all 3 climate projections we explored. We believe these refugia are high conservation priorities due to their potential to harbor rare species in the future. However, these locations are simultaneously highly vulnerable to climate change over the long term. These refugia contracted substantially between the 2050s and the 2080s, which supports the idea that the pace of climate change will strongly determine the availability and effectiveness of refugia for protecting today's biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley David R. Roberts; David R. Roberts; Julia Michalak; Joshua J. Lawler; Carlos Carroll;doi: 10.1111/cobi.13130
pmid: 29744936
AbstractAs evidenced by past climatic refugia, locations projected to harbor remnants of present‐day climates may serve as critical refugia for current biodiversity in the face of modern climate change. We mapped potential climatic refugia in the future across North America, defined as locations with increasingly rare climatic conditions. We identified these locations by tracking projected changes in the size and distribution of climate analogs over time. We used biologically derived thresholds to define analogs and tested the impacts of dispersal limitation with 4 distances to limit analog searches. We identified at most 12% of North America as potential climatic refugia. Refugia extent varied depending on the analog threshold, dispersal distance, and climate projection. However, in all cases refugia were concentrated at high elevations and in topographically complex regions. Refugia identified using different climate projections were largely nested, suggesting that identified refugia were relatively robust to climate‐projection selection. Existing conservation areas cover approximately 10% of North America and yet protected up to 25% of identified refugia, indicating that protected areas disproportionately include refugia. Refugia located at lower latitudes (≤40°N) and slightly lower elevations (approximately 2500 m) were more likely to be unprotected. Based on our results, a 23% expansion of the protected‐area network would be sufficient to protect the refugia present under all 3 climate projections we explored. We believe these refugia are high conservation priorities due to their potential to harbor rare species in the future. However, these locations are simultaneously highly vulnerable to climate change over the long term. These refugia contracted substantially between the 2050s and the 2080s, which supports the idea that the pace of climate change will strongly determine the availability and effectiveness of refugia for protecting today's biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 GermanyPublisher:Public Library of Science (PLoS) Authors: Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas;Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 GermanyPublisher:Public Library of Science (PLoS) Authors: Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas;Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:The Royal Society Authors: David R. Roberts; Andreas Hamann;North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2= 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.2903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.2903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:The Royal Society Authors: David R. Roberts; Andreas Hamann;North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2= 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.2903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.2903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu