
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Velocity of climate change algorithms for guiding conservation and management

doi: 10.1111/gcb.12736
pmid: 25310933
AbstractThe velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul‐de‐sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present‐to‐future velocities) and management of species populations (future‐to‐present velocities).
- University of Alberta Canada
Conservation of Natural Resources, Plant Dispersal, Climate, Climate Change, Models, Theoretical, Animals, Animal Distribution, Algorithms, Ecosystem
Conservation of Natural Resources, Plant Dispersal, Climate, Climate Change, Models, Theoretical, Animals, Animal Distribution, Algorithms, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).185 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
