- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Funded by:EC | REFORMEC| REFORMLaini A.; Burgazzi G.; Chadd R.; England J.; Tziortzis I.; Ventrucci M.; Vezza P.; Wood P. J.; Viaroli P.; Guareschi S.;pmid: 35395295
handle: 11583/2995390 , 11585/886430 , 2318/1863869 , 11381/2938097
Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales.
Publications Open Re... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Funded by:EC | REFORMEC| REFORMLaini A.; Burgazzi G.; Chadd R.; England J.; Tziortzis I.; Ventrucci M.; Vezza P.; Wood P. J.; Viaroli P.; Guareschi S.;pmid: 35395295
handle: 11583/2995390 , 11585/886430 , 2318/1863869 , 11381/2938097
Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales.
Publications Open Re... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:EC | DRYvEREC| DRYvERDaniel Escobar‐Camacho; Julie Crabot; Rachel Stubbington; Judy England; Romain Sarremejane; Núria Bonada; José María Fernández‐Calero; Miguel Cañedo‐Argüelles; Carla Ferreira Rezende; Pierre Chanut; Zoltán Csabai; Andrea C. Encalada; Alex Laini; Heikki Mykrä; Nabor Moya; Petr Pařil; Daniela Rosero‐López; Thibault Datry;ABSTRACTDrying river networks include non‐perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α‐diversity. At the river network scale, drying generates complex mosaics of dry and wet habitats, shaping metacommunities driven by both environmental and dispersal processes. By repeatedly resetting community succession, drying can enhance β‐diversity in space and time. To investigate the transferability of these concepts across continents, we compiled and analyzed a unique dataset of 43 aquatic invertebrate metacommunities from drying river networks in Europe and South America. In Europe, α‐diversity was consistently lower in non‐perennial than perennial reaches, whereas this pattern was not evident in South America. Concomitantly, β‐diversity was higher in non‐perennial reaches than in perennial ones in Europe but not in South America. In general, β‐diversity was predominantly driven by turnover rather than nestedness. Dispersal was the main driver of metacommunity dynamics, challenging prevailing views in river science that environmental filtering is the primary process shaping aquatic metacommunities. Lastly, α‐diversity decreased as drying duration increased, but this was not consistent across Europe. Overall, drying had continent‐specific effects, suggesting limited transferability of knowledge accumulated from North America and Europe to other biogeographic regions. As climate change intensifies, river drying is increasing, and our results underscore the importance of studying its effects across different regions. The importance of dispersal also suggests that management efforts should seek to enhance connectivity between reaches to effectively monitor, restore and conserve freshwater biodiversity.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:EC | DRYvEREC| DRYvERDaniel Escobar‐Camacho; Julie Crabot; Rachel Stubbington; Judy England; Romain Sarremejane; Núria Bonada; José María Fernández‐Calero; Miguel Cañedo‐Argüelles; Carla Ferreira Rezende; Pierre Chanut; Zoltán Csabai; Andrea C. Encalada; Alex Laini; Heikki Mykrä; Nabor Moya; Petr Pařil; Daniela Rosero‐López; Thibault Datry;ABSTRACTDrying river networks include non‐perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α‐diversity. At the river network scale, drying generates complex mosaics of dry and wet habitats, shaping metacommunities driven by both environmental and dispersal processes. By repeatedly resetting community succession, drying can enhance β‐diversity in space and time. To investigate the transferability of these concepts across continents, we compiled and analyzed a unique dataset of 43 aquatic invertebrate metacommunities from drying river networks in Europe and South America. In Europe, α‐diversity was consistently lower in non‐perennial than perennial reaches, whereas this pattern was not evident in South America. Concomitantly, β‐diversity was higher in non‐perennial reaches than in perennial ones in Europe but not in South America. In general, β‐diversity was predominantly driven by turnover rather than nestedness. Dispersal was the main driver of metacommunity dynamics, challenging prevailing views in river science that environmental filtering is the primary process shaping aquatic metacommunities. Lastly, α‐diversity decreased as drying duration increased, but this was not consistent across Europe. Overall, drying had continent‐specific effects, suggesting limited transferability of knowledge accumulated from North America and Europe to other biogeographic regions. As climate change intensifies, river drying is increasing, and our results underscore the importance of studying its effects across different regions. The importance of dispersal also suggests that management efforts should seek to enhance connectivity between reaches to effectively monitor, restore and conserve freshwater biodiversity.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jul 2018 Switzerland, Australia, France, Australia, Australia, Italy, Croatia, United Kingdom, Australia, Croatia, Canada, France, Australia, France, Australia, France, Australia, Germany, United Kingdom, Canada, Italy, Australia, Italy, FrancePublisher:Springer Science and Business Media LLC Vladimir Pešić; Simone D. Langhans; Nick Bond; Florian Altermatt; Isabel Pardo; Kate S. Boersma; A. M. De Girolamo; Sarig Gafny; Manuel A. S. Graça; R. del Campo; Chelsea J. Little; D. von Schiller; Arnaud Foulquier; Oleksandra Shumilova; Sophie Cauvy-Fraunié; Marko Miliša; Marek Polášek; J. I. Jones; Peter M. Negus; Angus R. McIntosh; Lluís Gómez-Gener; Clara Mendoza-Lera; Damien Banas; Amina Taleb; Andy Banegas-Medina; A. Uzan; Jean-Christophe Clément; Alex Laini; Stefan Lorenz; Dominik Zak; Dominik Zak; Sudeep D. Ghate; Núria Bonada; Dev K. Niyogi; Pablo Rodríguez-Lozano; Steffen U. Pauls; Erin E. Beller; Elisabeth I. Meyer; Emile Faye; Jason L. Hwan; Núria Cid; Catherine Leigh; Michael T. Bogan; Rachel Stubbington; Eduardo J. Martín; Michael Danger; Fiona Dyer; Alisha L. Steward; Ross Vander Vorste; Björn Gücker; S. Kubheka; María Isabel Arce; Nathan J. Waltham; Cleo Woelfle-Erskine; Marcos Moleón; Joanna Blessing; V. D. Diaz-Villanueva; Christopher T. Robinson; Daniel C. Allen; Robert J. Rolls; Juan F. Blanco-Libreros; M. M. Sánchez-Montoya; Ricardo J. Albariño; Ryan M. Burrows; Thibault Datry; Christiane Zarfl; Andreas Bruder; Arturo Elosegi; Jonathan C. Marshall; Manuela Morais; Iola G. Boëchat; Brian Four; Bianca de Freitas Terra; Shai Arnon; Tommaso Cancellario; Evans De La Barra; Kandikere R. Sridhar; Rosa Gómez; A. Papatheodoulou; Ana Savić; Melanie L. Blanchette; Cristina Canhoto; Klement Tockner; Klement Tockner; Annamaria Zoppini; Felicitas Hoppeler; Nabor Moya; Musa C. Mlambo; Catherine M. Febria; Petr Pařil; Mark O. Gessner; Mark O. Gessner; Roland Corti; Richard G. Storey; Stephanie M. Carlson; Simone Guareschi; K. C. Brintrup Barría;handle: 20.500.14243/376668 , 2318/1843767 , 10072/381825 , 10900/93464
Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)Croatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-018-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)Croatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-018-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jul 2018 Switzerland, Australia, France, Australia, Australia, Italy, Croatia, United Kingdom, Australia, Croatia, Canada, France, Australia, France, Australia, France, Australia, Germany, United Kingdom, Canada, Italy, Australia, Italy, FrancePublisher:Springer Science and Business Media LLC Vladimir Pešić; Simone D. Langhans; Nick Bond; Florian Altermatt; Isabel Pardo; Kate S. Boersma; A. M. De Girolamo; Sarig Gafny; Manuel A. S. Graça; R. del Campo; Chelsea J. Little; D. von Schiller; Arnaud Foulquier; Oleksandra Shumilova; Sophie Cauvy-Fraunié; Marko Miliša; Marek Polášek; J. I. Jones; Peter M. Negus; Angus R. McIntosh; Lluís Gómez-Gener; Clara Mendoza-Lera; Damien Banas; Amina Taleb; Andy Banegas-Medina; A. Uzan; Jean-Christophe Clément; Alex Laini; Stefan Lorenz; Dominik Zak; Dominik Zak; Sudeep D. Ghate; Núria Bonada; Dev K. Niyogi; Pablo Rodríguez-Lozano; Steffen U. Pauls; Erin E. Beller; Elisabeth I. Meyer; Emile Faye; Jason L. Hwan; Núria Cid; Catherine Leigh; Michael T. Bogan; Rachel Stubbington; Eduardo J. Martín; Michael Danger; Fiona Dyer; Alisha L. Steward; Ross Vander Vorste; Björn Gücker; S. Kubheka; María Isabel Arce; Nathan J. Waltham; Cleo Woelfle-Erskine; Marcos Moleón; Joanna Blessing; V. D. Diaz-Villanueva; Christopher T. Robinson; Daniel C. Allen; Robert J. Rolls; Juan F. Blanco-Libreros; M. M. Sánchez-Montoya; Ricardo J. Albariño; Ryan M. Burrows; Thibault Datry; Christiane Zarfl; Andreas Bruder; Arturo Elosegi; Jonathan C. Marshall; Manuela Morais; Iola G. Boëchat; Brian Four; Bianca de Freitas Terra; Shai Arnon; Tommaso Cancellario; Evans De La Barra; Kandikere R. Sridhar; Rosa Gómez; A. Papatheodoulou; Ana Savić; Melanie L. Blanchette; Cristina Canhoto; Klement Tockner; Klement Tockner; Annamaria Zoppini; Felicitas Hoppeler; Nabor Moya; Musa C. Mlambo; Catherine M. Febria; Petr Pařil; Mark O. Gessner; Mark O. Gessner; Roland Corti; Richard G. Storey; Stephanie M. Carlson; Simone Guareschi; K. C. Brintrup Barría;handle: 20.500.14243/376668 , 2318/1843767 , 10072/381825 , 10900/93464
Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)Croatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-018-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)Croatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-018-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Funded by:EC | GENESISEC| GENESISBalderacchi, Matteo; Perego, Alessia; Lazzari, Giovanni; Trevisan, Marco; Munoz-Carpena, Rafael; Acutis, Marco; Laini, Alex; Giussani, Andrea; Sanna, Mattia; Kane, Davide;pmid: 26383854
handle: 2434/316398 , 10807/67848 , 2318/1866048 , 11381/2841158
Fontanile is a Po Valley (Italy) quasi-natural lowland spring built in the middle age. This paper identifies options for the conservation of the Fontanile water dependent ecosystem, using scenarios and simulations, and exploring different policy options. Three modeling analysis have been performed: the first was carried out for estimating groundwater contamination and recharge from above, the second for evaluating the function of vegetative filter strip on the surface water quality and the last one for testing pesticide drift reduction due to the vegetative filter strip. Uncertainty characterization included climate change projections. Despite the nitrate concentration in water could favorite the eutrophication phenomena, this not occurs because of the low phosphate concentration in water and of the presence of arboreal shade. Therefore, the protection strategies must focus on sustaining desirable water quantity conditions. Water saving and conservation technologies that improve the agricultural productivity but reduce the Fontanile water flow and large buffer strips that have a limited efficacy due to the Fontanile hydrological settings can be judged as ecological traps. Inefficient irrigation systems, good agricultural practices, integrated pest management and arboreal filter strip can preserve the quality of those ecosystems.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.09.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.09.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Funded by:EC | GENESISEC| GENESISBalderacchi, Matteo; Perego, Alessia; Lazzari, Giovanni; Trevisan, Marco; Munoz-Carpena, Rafael; Acutis, Marco; Laini, Alex; Giussani, Andrea; Sanna, Mattia; Kane, Davide;pmid: 26383854
handle: 2434/316398 , 10807/67848 , 2318/1866048 , 11381/2841158
Fontanile is a Po Valley (Italy) quasi-natural lowland spring built in the middle age. This paper identifies options for the conservation of the Fontanile water dependent ecosystem, using scenarios and simulations, and exploring different policy options. Three modeling analysis have been performed: the first was carried out for estimating groundwater contamination and recharge from above, the second for evaluating the function of vegetative filter strip on the surface water quality and the last one for testing pesticide drift reduction due to the vegetative filter strip. Uncertainty characterization included climate change projections. Despite the nitrate concentration in water could favorite the eutrophication phenomena, this not occurs because of the low phosphate concentration in water and of the presence of arboreal shade. Therefore, the protection strategies must focus on sustaining desirable water quantity conditions. Water saving and conservation technologies that improve the agricultural productivity but reduce the Fontanile water flow and large buffer strips that have a limited efficacy due to the Fontanile hydrological settings can be judged as ecological traps. Inefficient irrigation systems, good agricultural practices, integrated pest management and arboreal filter strip can preserve the quality of those ecosystems.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.09.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.09.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:PAGEPress Publications Silvia Quadroni; Alex Laini; Francesca Salmaso; Livia Servanzi; Gaetano Gentili; Serena Zaccara; Paolo Espa; Giuseppe Crosa;handle: 11571/1518378
Climate change along with the increasing exploitation of water resources exacerbates low-flow periods, causing detrimental effects on riverine communities. The main mitigation measure currently adopted to counteract hydrological alterations induced by off-stream diversion is the release of minimum flows (MFs), even if within the European Union Water Framework Directive an upgrade towards ecological flows is urgently required to achieve good ecological status (GES). In this study, we investigated the temporal evolution of the benthic macroinvertebrate community in an Italian-regulated lowland river (Ticino River) to clarify the ecological effects of summer low flows, and we evaluated the current MFs in the perspective of meeting GES standard. Biomonitoring was carried out for four consecutive years (2019-2022), in a river site immediately below a large off-stream diversion. The four study years were characterized by different streamflow patterns, thus allowing us to compare the temporal trajectories of the community under different flow conditions. Moreover, the interruption of the low-flow periods due to overflow spilled by the upstream dam gave us the opportunity to assess the effects of experimental flow peaks. Contrary to the expectation, the macroinvertebrate assemblage kept almost unvaried across the years, showing great resistance and resilience to hydrological changes. Even in extraordinarily dry 2022, the community composition varied only slightly, with a reduction of mayflies and an increase of mollusks. However, a deterioration of the ecological status below GES standard was recorded that summer, indicating the need for an upgrading of the current MFs. This upgrade would include experimental flow peaks in critical periods, which act as intermediate disturbances, enhancing community richness, diversity, and overall quality, as well as compliance with a threshold of an index specifically developed for the hydrological pressure.
Journal of Limnology arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4081/jlimnol.2022.2139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Limnology arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4081/jlimnol.2022.2139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:PAGEPress Publications Silvia Quadroni; Alex Laini; Francesca Salmaso; Livia Servanzi; Gaetano Gentili; Serena Zaccara; Paolo Espa; Giuseppe Crosa;handle: 11571/1518378
Climate change along with the increasing exploitation of water resources exacerbates low-flow periods, causing detrimental effects on riverine communities. The main mitigation measure currently adopted to counteract hydrological alterations induced by off-stream diversion is the release of minimum flows (MFs), even if within the European Union Water Framework Directive an upgrade towards ecological flows is urgently required to achieve good ecological status (GES). In this study, we investigated the temporal evolution of the benthic macroinvertebrate community in an Italian-regulated lowland river (Ticino River) to clarify the ecological effects of summer low flows, and we evaluated the current MFs in the perspective of meeting GES standard. Biomonitoring was carried out for four consecutive years (2019-2022), in a river site immediately below a large off-stream diversion. The four study years were characterized by different streamflow patterns, thus allowing us to compare the temporal trajectories of the community under different flow conditions. Moreover, the interruption of the low-flow periods due to overflow spilled by the upstream dam gave us the opportunity to assess the effects of experimental flow peaks. Contrary to the expectation, the macroinvertebrate assemblage kept almost unvaried across the years, showing great resistance and resilience to hydrological changes. Even in extraordinarily dry 2022, the community composition varied only slightly, with a reduction of mayflies and an increase of mollusks. However, a deterioration of the ecological status below GES standard was recorded that summer, indicating the need for an upgrading of the current MFs. This upgrade would include experimental flow peaks in critical periods, which act as intermediate disturbances, enhancing community richness, diversity, and overall quality, as well as compliance with a threshold of an index specifically developed for the hydrological pressure.
Journal of Limnology arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4081/jlimnol.2022.2139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Limnology arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4081/jlimnol.2022.2139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Funded by:EC | REFORMEC| REFORMLaini A.; Burgazzi G.; Chadd R.; England J.; Tziortzis I.; Ventrucci M.; Vezza P.; Wood P. J.; Viaroli P.; Guareschi S.;pmid: 35395295
handle: 11583/2995390 , 11585/886430 , 2318/1863869 , 11381/2938097
Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales.
Publications Open Re... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Funded by:EC | REFORMEC| REFORMLaini A.; Burgazzi G.; Chadd R.; England J.; Tziortzis I.; Ventrucci M.; Vezza P.; Wood P. J.; Viaroli P.; Guareschi S.;pmid: 35395295
handle: 11583/2995390 , 11585/886430 , 2318/1863869 , 11381/2938097
Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales.
Publications Open Re... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:EC | DRYvEREC| DRYvERDaniel Escobar‐Camacho; Julie Crabot; Rachel Stubbington; Judy England; Romain Sarremejane; Núria Bonada; José María Fernández‐Calero; Miguel Cañedo‐Argüelles; Carla Ferreira Rezende; Pierre Chanut; Zoltán Csabai; Andrea C. Encalada; Alex Laini; Heikki Mykrä; Nabor Moya; Petr Pařil; Daniela Rosero‐López; Thibault Datry;ABSTRACTDrying river networks include non‐perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α‐diversity. At the river network scale, drying generates complex mosaics of dry and wet habitats, shaping metacommunities driven by both environmental and dispersal processes. By repeatedly resetting community succession, drying can enhance β‐diversity in space and time. To investigate the transferability of these concepts across continents, we compiled and analyzed a unique dataset of 43 aquatic invertebrate metacommunities from drying river networks in Europe and South America. In Europe, α‐diversity was consistently lower in non‐perennial than perennial reaches, whereas this pattern was not evident in South America. Concomitantly, β‐diversity was higher in non‐perennial reaches than in perennial ones in Europe but not in South America. In general, β‐diversity was predominantly driven by turnover rather than nestedness. Dispersal was the main driver of metacommunity dynamics, challenging prevailing views in river science that environmental filtering is the primary process shaping aquatic metacommunities. Lastly, α‐diversity decreased as drying duration increased, but this was not consistent across Europe. Overall, drying had continent‐specific effects, suggesting limited transferability of knowledge accumulated from North America and Europe to other biogeographic regions. As climate change intensifies, river drying is increasing, and our results underscore the importance of studying its effects across different regions. The importance of dispersal also suggests that management efforts should seek to enhance connectivity between reaches to effectively monitor, restore and conserve freshwater biodiversity.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:EC | DRYvEREC| DRYvERDaniel Escobar‐Camacho; Julie Crabot; Rachel Stubbington; Judy England; Romain Sarremejane; Núria Bonada; José María Fernández‐Calero; Miguel Cañedo‐Argüelles; Carla Ferreira Rezende; Pierre Chanut; Zoltán Csabai; Andrea C. Encalada; Alex Laini; Heikki Mykrä; Nabor Moya; Petr Pařil; Daniela Rosero‐López; Thibault Datry;ABSTRACTDrying river networks include non‐perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α‐diversity. At the river network scale, drying generates complex mosaics of dry and wet habitats, shaping metacommunities driven by both environmental and dispersal processes. By repeatedly resetting community succession, drying can enhance β‐diversity in space and time. To investigate the transferability of these concepts across continents, we compiled and analyzed a unique dataset of 43 aquatic invertebrate metacommunities from drying river networks in Europe and South America. In Europe, α‐diversity was consistently lower in non‐perennial than perennial reaches, whereas this pattern was not evident in South America. Concomitantly, β‐diversity was higher in non‐perennial reaches than in perennial ones in Europe but not in South America. In general, β‐diversity was predominantly driven by turnover rather than nestedness. Dispersal was the main driver of metacommunity dynamics, challenging prevailing views in river science that environmental filtering is the primary process shaping aquatic metacommunities. Lastly, α‐diversity decreased as drying duration increased, but this was not consistent across Europe. Overall, drying had continent‐specific effects, suggesting limited transferability of knowledge accumulated from North America and Europe to other biogeographic regions. As climate change intensifies, river drying is increasing, and our results underscore the importance of studying its effects across different regions. The importance of dispersal also suggests that management efforts should seek to enhance connectivity between reaches to effectively monitor, restore and conserve freshwater biodiversity.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jul 2018 Switzerland, Australia, France, Australia, Australia, Italy, Croatia, United Kingdom, Australia, Croatia, Canada, France, Australia, France, Australia, France, Australia, Germany, United Kingdom, Canada, Italy, Australia, Italy, FrancePublisher:Springer Science and Business Media LLC Vladimir Pešić; Simone D. Langhans; Nick Bond; Florian Altermatt; Isabel Pardo; Kate S. Boersma; A. M. De Girolamo; Sarig Gafny; Manuel A. S. Graça; R. del Campo; Chelsea J. Little; D. von Schiller; Arnaud Foulquier; Oleksandra Shumilova; Sophie Cauvy-Fraunié; Marko Miliša; Marek Polášek; J. I. Jones; Peter M. Negus; Angus R. McIntosh; Lluís Gómez-Gener; Clara Mendoza-Lera; Damien Banas; Amina Taleb; Andy Banegas-Medina; A. Uzan; Jean-Christophe Clément; Alex Laini; Stefan Lorenz; Dominik Zak; Dominik Zak; Sudeep D. Ghate; Núria Bonada; Dev K. Niyogi; Pablo Rodríguez-Lozano; Steffen U. Pauls; Erin E. Beller; Elisabeth I. Meyer; Emile Faye; Jason L. Hwan; Núria Cid; Catherine Leigh; Michael T. Bogan; Rachel Stubbington; Eduardo J. Martín; Michael Danger; Fiona Dyer; Alisha L. Steward; Ross Vander Vorste; Björn Gücker; S. Kubheka; María Isabel Arce; Nathan J. Waltham; Cleo Woelfle-Erskine; Marcos Moleón; Joanna Blessing; V. D. Diaz-Villanueva; Christopher T. Robinson; Daniel C. Allen; Robert J. Rolls; Juan F. Blanco-Libreros; M. M. Sánchez-Montoya; Ricardo J. Albariño; Ryan M. Burrows; Thibault Datry; Christiane Zarfl; Andreas Bruder; Arturo Elosegi; Jonathan C. Marshall; Manuela Morais; Iola G. Boëchat; Brian Four; Bianca de Freitas Terra; Shai Arnon; Tommaso Cancellario; Evans De La Barra; Kandikere R. Sridhar; Rosa Gómez; A. Papatheodoulou; Ana Savić; Melanie L. Blanchette; Cristina Canhoto; Klement Tockner; Klement Tockner; Annamaria Zoppini; Felicitas Hoppeler; Nabor Moya; Musa C. Mlambo; Catherine M. Febria; Petr Pařil; Mark O. Gessner; Mark O. Gessner; Roland Corti; Richard G. Storey; Stephanie M. Carlson; Simone Guareschi; K. C. Brintrup Barría;handle: 20.500.14243/376668 , 2318/1843767 , 10072/381825 , 10900/93464
Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)Croatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-018-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)Croatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-018-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jul 2018 Switzerland, Australia, France, Australia, Australia, Italy, Croatia, United Kingdom, Australia, Croatia, Canada, France, Australia, France, Australia, France, Australia, Germany, United Kingdom, Canada, Italy, Australia, Italy, FrancePublisher:Springer Science and Business Media LLC Vladimir Pešić; Simone D. Langhans; Nick Bond; Florian Altermatt; Isabel Pardo; Kate S. Boersma; A. M. De Girolamo; Sarig Gafny; Manuel A. S. Graça; R. del Campo; Chelsea J. Little; D. von Schiller; Arnaud Foulquier; Oleksandra Shumilova; Sophie Cauvy-Fraunié; Marko Miliša; Marek Polášek; J. I. Jones; Peter M. Negus; Angus R. McIntosh; Lluís Gómez-Gener; Clara Mendoza-Lera; Damien Banas; Amina Taleb; Andy Banegas-Medina; A. Uzan; Jean-Christophe Clément; Alex Laini; Stefan Lorenz; Dominik Zak; Dominik Zak; Sudeep D. Ghate; Núria Bonada; Dev K. Niyogi; Pablo Rodríguez-Lozano; Steffen U. Pauls; Erin E. Beller; Elisabeth I. Meyer; Emile Faye; Jason L. Hwan; Núria Cid; Catherine Leigh; Michael T. Bogan; Rachel Stubbington; Eduardo J. Martín; Michael Danger; Fiona Dyer; Alisha L. Steward; Ross Vander Vorste; Björn Gücker; S. Kubheka; María Isabel Arce; Nathan J. Waltham; Cleo Woelfle-Erskine; Marcos Moleón; Joanna Blessing; V. D. Diaz-Villanueva; Christopher T. Robinson; Daniel C. Allen; Robert J. Rolls; Juan F. Blanco-Libreros; M. M. Sánchez-Montoya; Ricardo J. Albariño; Ryan M. Burrows; Thibault Datry; Christiane Zarfl; Andreas Bruder; Arturo Elosegi; Jonathan C. Marshall; Manuela Morais; Iola G. Boëchat; Brian Four; Bianca de Freitas Terra; Shai Arnon; Tommaso Cancellario; Evans De La Barra; Kandikere R. Sridhar; Rosa Gómez; A. Papatheodoulou; Ana Savić; Melanie L. Blanchette; Cristina Canhoto; Klement Tockner; Klement Tockner; Annamaria Zoppini; Felicitas Hoppeler; Nabor Moya; Musa C. Mlambo; Catherine M. Febria; Petr Pařil; Mark O. Gessner; Mark O. Gessner; Roland Corti; Richard G. Storey; Stephanie M. Carlson; Simone Guareschi; K. C. Brintrup Barría;handle: 20.500.14243/376668 , 2318/1843767 , 10072/381825 , 10900/93464
Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)Croatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-018-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)Croatian Scientific Bibliography - CROSBIArticle . 2018Data sources: Croatian Scientific Bibliography - CROSBIZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-018-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Funded by:EC | GENESISEC| GENESISBalderacchi, Matteo; Perego, Alessia; Lazzari, Giovanni; Trevisan, Marco; Munoz-Carpena, Rafael; Acutis, Marco; Laini, Alex; Giussani, Andrea; Sanna, Mattia; Kane, Davide;pmid: 26383854
handle: 2434/316398 , 10807/67848 , 2318/1866048 , 11381/2841158
Fontanile is a Po Valley (Italy) quasi-natural lowland spring built in the middle age. This paper identifies options for the conservation of the Fontanile water dependent ecosystem, using scenarios and simulations, and exploring different policy options. Three modeling analysis have been performed: the first was carried out for estimating groundwater contamination and recharge from above, the second for evaluating the function of vegetative filter strip on the surface water quality and the last one for testing pesticide drift reduction due to the vegetative filter strip. Uncertainty characterization included climate change projections. Despite the nitrate concentration in water could favorite the eutrophication phenomena, this not occurs because of the low phosphate concentration in water and of the presence of arboreal shade. Therefore, the protection strategies must focus on sustaining desirable water quantity conditions. Water saving and conservation technologies that improve the agricultural productivity but reduce the Fontanile water flow and large buffer strips that have a limited efficacy due to the Fontanile hydrological settings can be judged as ecological traps. Inefficient irrigation systems, good agricultural practices, integrated pest management and arboreal filter strip can preserve the quality of those ecosystems.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.09.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.09.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Funded by:EC | GENESISEC| GENESISBalderacchi, Matteo; Perego, Alessia; Lazzari, Giovanni; Trevisan, Marco; Munoz-Carpena, Rafael; Acutis, Marco; Laini, Alex; Giussani, Andrea; Sanna, Mattia; Kane, Davide;pmid: 26383854
handle: 2434/316398 , 10807/67848 , 2318/1866048 , 11381/2841158
Fontanile is a Po Valley (Italy) quasi-natural lowland spring built in the middle age. This paper identifies options for the conservation of the Fontanile water dependent ecosystem, using scenarios and simulations, and exploring different policy options. Three modeling analysis have been performed: the first was carried out for estimating groundwater contamination and recharge from above, the second for evaluating the function of vegetative filter strip on the surface water quality and the last one for testing pesticide drift reduction due to the vegetative filter strip. Uncertainty characterization included climate change projections. Despite the nitrate concentration in water could favorite the eutrophication phenomena, this not occurs because of the low phosphate concentration in water and of the presence of arboreal shade. Therefore, the protection strategies must focus on sustaining desirable water quantity conditions. Water saving and conservation technologies that improve the agricultural productivity but reduce the Fontanile water flow and large buffer strips that have a limited efficacy due to the Fontanile hydrological settings can be judged as ecological traps. Inefficient irrigation systems, good agricultural practices, integrated pest management and arboreal filter strip can preserve the quality of those ecosystems.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.09.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.09.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:PAGEPress Publications Silvia Quadroni; Alex Laini; Francesca Salmaso; Livia Servanzi; Gaetano Gentili; Serena Zaccara; Paolo Espa; Giuseppe Crosa;handle: 11571/1518378
Climate change along with the increasing exploitation of water resources exacerbates low-flow periods, causing detrimental effects on riverine communities. The main mitigation measure currently adopted to counteract hydrological alterations induced by off-stream diversion is the release of minimum flows (MFs), even if within the European Union Water Framework Directive an upgrade towards ecological flows is urgently required to achieve good ecological status (GES). In this study, we investigated the temporal evolution of the benthic macroinvertebrate community in an Italian-regulated lowland river (Ticino River) to clarify the ecological effects of summer low flows, and we evaluated the current MFs in the perspective of meeting GES standard. Biomonitoring was carried out for four consecutive years (2019-2022), in a river site immediately below a large off-stream diversion. The four study years were characterized by different streamflow patterns, thus allowing us to compare the temporal trajectories of the community under different flow conditions. Moreover, the interruption of the low-flow periods due to overflow spilled by the upstream dam gave us the opportunity to assess the effects of experimental flow peaks. Contrary to the expectation, the macroinvertebrate assemblage kept almost unvaried across the years, showing great resistance and resilience to hydrological changes. Even in extraordinarily dry 2022, the community composition varied only slightly, with a reduction of mayflies and an increase of mollusks. However, a deterioration of the ecological status below GES standard was recorded that summer, indicating the need for an upgrading of the current MFs. This upgrade would include experimental flow peaks in critical periods, which act as intermediate disturbances, enhancing community richness, diversity, and overall quality, as well as compliance with a threshold of an index specifically developed for the hydrological pressure.
Journal of Limnology arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4081/jlimnol.2022.2139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Limnology arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4081/jlimnol.2022.2139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:PAGEPress Publications Silvia Quadroni; Alex Laini; Francesca Salmaso; Livia Servanzi; Gaetano Gentili; Serena Zaccara; Paolo Espa; Giuseppe Crosa;handle: 11571/1518378
Climate change along with the increasing exploitation of water resources exacerbates low-flow periods, causing detrimental effects on riverine communities. The main mitigation measure currently adopted to counteract hydrological alterations induced by off-stream diversion is the release of minimum flows (MFs), even if within the European Union Water Framework Directive an upgrade towards ecological flows is urgently required to achieve good ecological status (GES). In this study, we investigated the temporal evolution of the benthic macroinvertebrate community in an Italian-regulated lowland river (Ticino River) to clarify the ecological effects of summer low flows, and we evaluated the current MFs in the perspective of meeting GES standard. Biomonitoring was carried out for four consecutive years (2019-2022), in a river site immediately below a large off-stream diversion. The four study years were characterized by different streamflow patterns, thus allowing us to compare the temporal trajectories of the community under different flow conditions. Moreover, the interruption of the low-flow periods due to overflow spilled by the upstream dam gave us the opportunity to assess the effects of experimental flow peaks. Contrary to the expectation, the macroinvertebrate assemblage kept almost unvaried across the years, showing great resistance and resilience to hydrological changes. Even in extraordinarily dry 2022, the community composition varied only slightly, with a reduction of mayflies and an increase of mollusks. However, a deterioration of the ecological status below GES standard was recorded that summer, indicating the need for an upgrading of the current MFs. This upgrade would include experimental flow peaks in critical periods, which act as intermediate disturbances, enhancing community richness, diversity, and overall quality, as well as compliance with a threshold of an index specifically developed for the hydrological pressure.
Journal of Limnology arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4081/jlimnol.2022.2139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Limnology arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4081/jlimnol.2022.2139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu