Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using invertebrate functional traits to improve flow variability assessment within European rivers

Authors: Laini A.; Burgazzi G.; Chadd R.; England J.; Tziortzis I.; Ventrucci M.; Vezza P.; +3 Authors

Using invertebrate functional traits to improve flow variability assessment within European rivers

Abstract

Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales.

Country
Italy
Keywords

550, Hydrological alteration, Climate Change, Bioassessment; Flow velocity preference; Functional ecology; Hydrological alteration; River ecosystems; Traits theory, 333, 532, Rivers, River ecosystem, Animals, Flow velocity preference, Traits theory, Bioassessment, Ecosystem, Biodiversity, Invertebrates, Functional ecology, Bioassessment; Flow velocity preference; Traits theory; River ecosystems; Hydrological alteration; Functional ecology;, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green