- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Inter-Research Science Center Foo, Shawna A; Dworjanyn, Symon A; Poore, Alistair GB; Harianto, Januar; Byrne, Maria;doi: 10.3354/meps11841
To predict impacts of ocean acidification and warming on the responses of marine populations, it is important to determine an organism’s capacity for phenotypic plasticity and genetic adaptation. We determined the effects of near-future acidification and warming across the life cycle of Heliocidaris erythrogramma from fertilisation to metamorphosis in the progeny of 16 sire-dam crosses. Sources of variation in tolerance to warming (+3°C) and acidification (-0.3 to –0.5 pH units) were investigated for fertilisation, larvae and juveniles. Across all life stages, maternal legacy was important, with dam identity significantly interacting with stressors. Across the genotypes tested, fertilisation was negatively affected by increased temperature, but not low pH. Larval development was compromised by low pH, but not increased temperature. By the juvenile stage, no impact of warming or acidification was evident, likely due to selective mortality of sensitive individuals, indicating the presence of a subset of resilient progeny. Across all treatments, the juveniles exhibited a similar ability to calcify. The impact of treatments on development was influenced by parental identity, with the offspring of some sire-dam pairs more sensitive than others. That the progeny of some sire-dam pairs showed high stress tolerance indicates the potential for selection of resistant genotypes and adaptation that could facilitate the persistence of H. erythrogramma populations. Performance of progeny was not consistent across development, with the impact of stressors differing depending on developmental stage. This shows the importance of assessing climatic change across multiple stages in the life cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps11841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps11841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Campbell, H; Ledet, J; Poore, AGB; Byrne, M;The thermal response of the amphipod Sunamphitoe parmerong was contrasted between unacclimated 'wild' and acclimated populations. Brooding females were allocated to 17 °C or 23 °C treatments and their progeny developed to adulthood at the same temperature. Tolerance to acute thermal challenge (26-36 °C) was determined. The 17 °C and 23 °C acclimated S. parmerong had a 0.45 and 0.64 risk of death compared to the unacclimated individuals. The upper lethal temperature (LT50) was 27.4 °C for the unacclimated group and 29.6 °C and 30.4 °C for the 17 °C and 23 °C acclimated groups, respectively. Acclimation shifted their LT50 by 2.2 °C and 3 °C, respectively. The wild population exhibited high variability in thermal tolerance, potentially due to their environmental history and greater diversity of genotypes. After acclimation S. parmerong had decreased variability in thermal tolerance and that of the 23 °C group shifted by 1 °C compared with the 17 °C group. These results indicate developmental phenotypic plasticity or differential survival of resilient progeny as potential mechanisms to facilitate persistence in a warming ocean.
UNSWorks arrow_drop_down Marine Environmental ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down Marine Environmental ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP150102771Authors: Ledet, J; Byrne, M; Poore, AGB;Increasing sea surface temperatures are predicted to alter marine plant-herbivore interactions and, thus, the structure and function of algal and seagrass communities. Given the fundamental role of host plant quality in determining herbivore fitness, predicting the effects of increased temperatures requires an understanding of how temperature may interact with diet quality. We used an herbivorous marine amphipod, Sunamphitoe parmerong, to test how temperature and diet interact to alter herbivore growth, feeding rates, survival, and fecundity in short- and long-term assays. In short-term thermal stress assays, S. parmerong was tolerant to the range of temperatures that it currently experiences in nature (20-26 °C), with mortality at temperatures > 27 °C. In longer term experiments, two generations of S. parmerong were reared in nine combinations of temperature (ambient, + 2, + 4 °C) and diet (two high- and one low-quality algal species) treatments. Temperature and diet interacted to determine total numbers of amphipods in the F1 generation and the potential F2 population size (sum of brooded eggs and newly hatched juveniles). The size and development rate of F1 individuals were affected by diet, but not temperature. Consumption rates per capita were highest at intermediate temperatures but could not explain the observed differences in survival. Our results show that predicting the effects of increasing temperature on marine herbivores will be complicated by variation in host plant quality, and that climate-driven changes to plant availability will affect herbivore performance, and thus the strength of plant-herbivore interactions.
UNSWorks arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-018-4084-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-018-4084-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, United States, Australia, NetherlandsPublisher:The Royal Society Peter J. Mumby; Enric Ballesteros; Alex Sen Gupta; Will F. Figueira; Peter D. Steinberg; Moninya Roughan; David A. Feary; Kenneth L. Heck; Ezequiel M. Marzinelli; Erik van Sebille; Mark E. Hay; Adriana Vergés; Dan A. Smale; Dan A. Smale; Shaun K. Wilson; Alistair G. B. Poore; Fiona Tomas; Fiona Tomas; David J. Booth; Toni Mizerek; Thomas Wernberg; Melinda A. Coleman; Alexandra H. Campbell; Tim J. Langlois; Yohei Nakamura;Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.
Proceedings of the R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: Pure Utrecht UniversityProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.0846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 768 citations 768 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 33visibility views 33 download downloads 24 Powered bymore_vert Proceedings of the R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: Pure Utrecht UniversityProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.0846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, United States, Canada, Italy, United States, Canada, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedKevin A. Hovel; Oscar Pino; Rod M. Connolly; Meredith S. Diskin; Alistair G. B. Poore; Peter I. Macreadie; Shelby L. Ziegler; Camilla Bertolini; Paige G. Ross; Claudia Kruschel; Torrance C. Hanley; Delbert L. Smee; Brian R. Silliman; Clara M. Hereu; Andrew H. Altieri; Andrew H. Altieri; Mathieu Cusson; Brendan S. Lanham; Bree K. Yednock; J. Emmett Duffy; A. Randall Hughes; Brigitta I. van Tussenbroek; Kristin M. Hultgren; Brent B. Hughes; Midoli Bresch; F. Joel Fodrie; Enrique Lozano-Álvarez; Lane N. Johnston; Michael Rasheed; Jonathan S. Lefcheck; Paul H. York; Nessa E. O'Connor; Kun-Seop Lee; Zachary L. Monteith; Christopher J. Patrick; Andrew D. Olds; Erin Aiello; Jennifer K. O'Leary; Jennifer K. O'Leary; Adriana Vergés; Christopher J. Henderson; Thomas A. Schlacher; Margot Hessing-Lewis; Martin Thiel; Brendan P. Kelaher; Dean S. Janiak; Mallarie E. Yeager; Richard K. F. Unsworth; Ross Whippo; Ross Whippo; Lisandro Benedetti-Cecchi; Augusto A. V. Flores; Olivia J. Graham; Elrika D’Souza; Katrin Reiss; John J. Stachowicz; O. Kennedy Rhoades; O. Kennedy Rhoades; Lindsay C. Gaskins; Matthew A. Whalen; Matthew A. Whalen; Wendel W. Raymond; Paul E. Carnell; Max T. Robinson; Janina Seemann; Teresa Alcoverro; Teresa Alcoverro; Holger Jänes; Fabio Bulleri; Pablo Jorgensen; Francesca Rossi; Stéphanie Cimon; Aaron W. E. Galloway;Significance Consumption transfers energy and materials through food chains and fundamentally influences ecosystem productivity. Therefore, mapping the distribution of consumer feeding intensity is key to understanding how environmental changes influence biodiversity, with consequent effects on trophic transfer and top–down impacts through food webs. Our global comparison of standardized bait consumption in shallow coastal habitats finds a peak in feeding intensity away from the equator that is better explained by the presence of particular consumer families than by latitude or temperature. This study complements recent demonstrations that changes in biodiversity can have similar or larger impacts on ecological processes than those of climate.
Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 165 Powered bymore_vert Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:UNSW Sydney Authors: Poore, Alistair; Gribben, Paul;doi: 10.26190/mppw-3a36
In this study, we used a trait-based approach to quantify morphological varability in subtidal rocky reefs dominated by the algal genus Sargassum along a latitudinal gradient, from subtropical to cool temperate sites, in south-eastern Australia (~900 km). We tested whether large-scale variation in sea surface temperature (SST), site exposure and nutrient availability can predict algal biomass and individual morphology. Morphological traits of Sargassum collected across 6 degree of latitude along the south-eastern coast of Australia
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/mppw-3a36&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/mppw-3a36&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:The Royal Society Funded by:ARC | How are weeds adapting to...ARC| How are weeds adapting to life in Australia? Quantifying the rate and direction of evolution in introduced species.Brandenburger, CR; Sherwin, WB; Creer, SM; Buitenwerf, R; Poore, AGB; Frankham, R; Finnerty, PB; Moles, AT;Thousands of species have been introduced to new ranges worldwide. These introductions provide opportunities for researchers to study evolutionary changes in form and function in response to new environmental conditions. However, almost all previous studies of morphological change in introduced species have compared introduced populations to populations from across the species' native range, so variation within native ranges probably confounds estimates of evolutionary change. In this study, we used microsatellites to locate the source population for the beach daisy Arctotheca populifolia that had been introduced to eastern Australia. We then compared four introduced populations from Australia with their original South African source population in a common-environment experiment. Despite being separated for less than 100 years, source and introduced populations of A. populifolia display substantial heritable morphological differences. Contrary to the evolution of increased competitive ability hypothesis, introduced plants were shorter than source plants, and introduced and source plants did not differ in total biomass. Contrary to predictions based on higher rainfall in the introduced range, introduced plants had smaller, thicker leaves than source plants. Finally, while source plants develop lobed adult leaves, introduced plants retain their spathulate juvenile leaf shape into adulthood. These changes indicate that rapid evolution in introduced species happens, but not always in the direction predicted by theory.
UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_79449Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.1713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_79449Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.1713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Frontiers Media SA Jennifer S. Clark; Jennifer S. Clark; Alistair G. B. Poore; Martina A. Doblin; Melinda A. Coleman;Species inhabiting warm-edge populations of their distribution are suggested to be at the forefront of global warming due to reduced fitness, limited gene flow and living close to their physiological thermal limits. Determining the scale that governs thermal niche and the functional responses of habitat-forming species to environmental stressors is critical for successful conservation efforts, particularly as coastal ecosystems are impacted by global change. Here, we examine the susceptibility of warm-edge populations to warming, in the habitat-forming macroalga, Hormosira banksii, from south-eastern Australia. We use a quantitative breeding design to quantify intraspecific variation in thermal performance (growth, ontogenic development and photosynthetic efficiency) of different genotypes sourced from sites at the equatorward distributional edge (warm-edge) and those toward the center of its distribution (non-edge). The genetic diversity and structure of H. banksii was also examined using microsatellite markers amongst the same sites. Our results found variable responses in thermal performance for growth and development. Warm-edge germlings grew optimally in lower temperatures tested and had narrower thermal breadth compared to non-edge germlings which grew in higher and more broader temperatures. Warm-edge germlings however, showed greater plasticity to tolerate high light indicated by a greater proportion of energy being dissipated as regulated non-photochemical quenching [Y(NPQ)] than non-regulated non-photochemical quenching [Y(NO)]. Overall genetic diversity was lower at the warm-edge location with evidence of increased structuring and reduced gene flow in comparison to the non-edge location. Evidence of genetic structuring was not found locally between high and low shore within sites. Together, these data suggest that non-edge populations may be “thermally buffered” from increased temperatures associated with ocean warming. Warm-edge populations of H. banksii, however, may be vulnerable to warming, due to narrower thermal breadth and sensitivity to higher temperatures, with genetic impoverishment through loss of individuals likely to further reduce population viability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Wiley Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT140100322Authors: Talia Peta Stelling‐Wood; Alistair G. B. Poore; Paul E. Gribben;AbstractGlobal patterns of plant biomass drive the distribution of much of the marine and terrestrial life on Earth. This is because their biomass and physical structure have important consequences for the communities they support by providing food and habitat. In terrestrial ecosystems, temperature is one of the major determinants of plant biomass and can influence plant and leaf morphology. In temperate marine systems, macroalgae are major habitat‐formers and commonly display highly variable morphology in response to local environmental conditions. Variation in their morphology, and thus habitat structure on temperate reefs, however, is poorly understood across large scales. In this study, we used a trait‐based approach to quantify morphological variability in subtidal rocky reefs dominated by the algal genus Sargassum along a latitudinal gradient, in southeastern Australia (~900 km). We tested whether large‐scale variation in sea surface temperature (SST), site exposure, and nutrient availability can predict algal biomass and individual morphology. We found Sargassum biomass declined with increasing maximum SST. We also found that individual morphology varied with abiotic ocean variables. Frond size and intraindividual variability in frond size decreased with increasing with distance from the equator, as SST decreased and nitrate concentration increased. The shape of fronds displayed no clear relationship with any of the abiotic variables measured. These results suggest climate change will cause significant changes to the structure of Sargassum habitats along the southeastern coast of Australia, resulting in an overall reduction in biomass and increase in the prevalence of thalli with large, highly variable fronds. Using a space‐for‐time approach means shifts in morphological trait values can be used as early warning signs of impending species declines and regime shifts. Consequently, by studying traits and how they change across large scales we can potentially predict and anticipate the impacts of environmental change on these communities.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.7714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.7714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 GermanyPublisher:The Royal Society Lars Gutow; Alistair G. B. Poore; Manuel A. Díaz Poblete; Vieia Villalobos; Martin Thiel;Large herbivores such as sea urchins and fish consume a high proportion of benthic primary production and frequently control the biomass of marine macrophytes. By contrast, small mesograzers, including gastropods and peracarid crustaceans, are abundant on seaweeds but have low per capita feeding rates and their impacts on marine macrophytes are difficult to predict. To quantify how mesograzers can affect macrophytes, we examined feeding damage by the herbivorous amphipodsSunamphitoe lessoniophilaandBircennasp., which construct burrows in the stipes of subtidal individuals of the kelpLessonia berteroanain northern-central Chile, southeast Pacific. Infested stipes showed a characteristic sequence of progressive tissue degeneration. The composition of the amphipod assemblages inside the burrows varied between the different stages of infestation of the burrows. Aggregations of grazers within burrows and microhabitat preference of the amphipods result in localized feeding, leading to stipe breakage and loss of substantial algal biomass. The estimated loss of biomass of single stipes varied between 1 and 77%. For the local kelp population, the amphipods caused an estimated loss of biomass of 24–44%. Consequently, small herbivores can cause considerable damage to large kelp species if their feeding activity is concentrated on structurally valuable algal tissue.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Inter-Research Science Center Foo, Shawna A; Dworjanyn, Symon A; Poore, Alistair GB; Harianto, Januar; Byrne, Maria;doi: 10.3354/meps11841
To predict impacts of ocean acidification and warming on the responses of marine populations, it is important to determine an organism’s capacity for phenotypic plasticity and genetic adaptation. We determined the effects of near-future acidification and warming across the life cycle of Heliocidaris erythrogramma from fertilisation to metamorphosis in the progeny of 16 sire-dam crosses. Sources of variation in tolerance to warming (+3°C) and acidification (-0.3 to –0.5 pH units) were investigated for fertilisation, larvae and juveniles. Across all life stages, maternal legacy was important, with dam identity significantly interacting with stressors. Across the genotypes tested, fertilisation was negatively affected by increased temperature, but not low pH. Larval development was compromised by low pH, but not increased temperature. By the juvenile stage, no impact of warming or acidification was evident, likely due to selective mortality of sensitive individuals, indicating the presence of a subset of resilient progeny. Across all treatments, the juveniles exhibited a similar ability to calcify. The impact of treatments on development was influenced by parental identity, with the offspring of some sire-dam pairs more sensitive than others. That the progeny of some sire-dam pairs showed high stress tolerance indicates the potential for selection of resistant genotypes and adaptation that could facilitate the persistence of H. erythrogramma populations. Performance of progeny was not consistent across development, with the impact of stressors differing depending on developmental stage. This shows the importance of assessing climatic change across multiple stages in the life cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps11841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps11841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Campbell, H; Ledet, J; Poore, AGB; Byrne, M;The thermal response of the amphipod Sunamphitoe parmerong was contrasted between unacclimated 'wild' and acclimated populations. Brooding females were allocated to 17 °C or 23 °C treatments and their progeny developed to adulthood at the same temperature. Tolerance to acute thermal challenge (26-36 °C) was determined. The 17 °C and 23 °C acclimated S. parmerong had a 0.45 and 0.64 risk of death compared to the unacclimated individuals. The upper lethal temperature (LT50) was 27.4 °C for the unacclimated group and 29.6 °C and 30.4 °C for the 17 °C and 23 °C acclimated groups, respectively. Acclimation shifted their LT50 by 2.2 °C and 3 °C, respectively. The wild population exhibited high variability in thermal tolerance, potentially due to their environmental history and greater diversity of genotypes. After acclimation S. parmerong had decreased variability in thermal tolerance and that of the 23 °C group shifted by 1 °C compared with the 17 °C group. These results indicate developmental phenotypic plasticity or differential survival of resilient progeny as potential mechanisms to facilitate persistence in a warming ocean.
UNSWorks arrow_drop_down Marine Environmental ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down Marine Environmental ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP150102771Authors: Ledet, J; Byrne, M; Poore, AGB;Increasing sea surface temperatures are predicted to alter marine plant-herbivore interactions and, thus, the structure and function of algal and seagrass communities. Given the fundamental role of host plant quality in determining herbivore fitness, predicting the effects of increased temperatures requires an understanding of how temperature may interact with diet quality. We used an herbivorous marine amphipod, Sunamphitoe parmerong, to test how temperature and diet interact to alter herbivore growth, feeding rates, survival, and fecundity in short- and long-term assays. In short-term thermal stress assays, S. parmerong was tolerant to the range of temperatures that it currently experiences in nature (20-26 °C), with mortality at temperatures > 27 °C. In longer term experiments, two generations of S. parmerong were reared in nine combinations of temperature (ambient, + 2, + 4 °C) and diet (two high- and one low-quality algal species) treatments. Temperature and diet interacted to determine total numbers of amphipods in the F1 generation and the potential F2 population size (sum of brooded eggs and newly hatched juveniles). The size and development rate of F1 individuals were affected by diet, but not temperature. Consumption rates per capita were highest at intermediate temperatures but could not explain the observed differences in survival. Our results show that predicting the effects of increasing temperature on marine herbivores will be complicated by variation in host plant quality, and that climate-driven changes to plant availability will affect herbivore performance, and thus the strength of plant-herbivore interactions.
UNSWorks arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-018-4084-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-018-4084-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, United States, Australia, NetherlandsPublisher:The Royal Society Peter J. Mumby; Enric Ballesteros; Alex Sen Gupta; Will F. Figueira; Peter D. Steinberg; Moninya Roughan; David A. Feary; Kenneth L. Heck; Ezequiel M. Marzinelli; Erik van Sebille; Mark E. Hay; Adriana Vergés; Dan A. Smale; Dan A. Smale; Shaun K. Wilson; Alistair G. B. Poore; Fiona Tomas; Fiona Tomas; David J. Booth; Toni Mizerek; Thomas Wernberg; Melinda A. Coleman; Alexandra H. Campbell; Tim J. Langlois; Yohei Nakamura;Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.
Proceedings of the R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: Pure Utrecht UniversityProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.0846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 768 citations 768 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 33visibility views 33 download downloads 24 Powered bymore_vert Proceedings of the R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: Pure Utrecht UniversityProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.0846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, United States, Canada, Italy, United States, Canada, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedKevin A. Hovel; Oscar Pino; Rod M. Connolly; Meredith S. Diskin; Alistair G. B. Poore; Peter I. Macreadie; Shelby L. Ziegler; Camilla Bertolini; Paige G. Ross; Claudia Kruschel; Torrance C. Hanley; Delbert L. Smee; Brian R. Silliman; Clara M. Hereu; Andrew H. Altieri; Andrew H. Altieri; Mathieu Cusson; Brendan S. Lanham; Bree K. Yednock; J. Emmett Duffy; A. Randall Hughes; Brigitta I. van Tussenbroek; Kristin M. Hultgren; Brent B. Hughes; Midoli Bresch; F. Joel Fodrie; Enrique Lozano-Álvarez; Lane N. Johnston; Michael Rasheed; Jonathan S. Lefcheck; Paul H. York; Nessa E. O'Connor; Kun-Seop Lee; Zachary L. Monteith; Christopher J. Patrick; Andrew D. Olds; Erin Aiello; Jennifer K. O'Leary; Jennifer K. O'Leary; Adriana Vergés; Christopher J. Henderson; Thomas A. Schlacher; Margot Hessing-Lewis; Martin Thiel; Brendan P. Kelaher; Dean S. Janiak; Mallarie E. Yeager; Richard K. F. Unsworth; Ross Whippo; Ross Whippo; Lisandro Benedetti-Cecchi; Augusto A. V. Flores; Olivia J. Graham; Elrika D’Souza; Katrin Reiss; John J. Stachowicz; O. Kennedy Rhoades; O. Kennedy Rhoades; Lindsay C. Gaskins; Matthew A. Whalen; Matthew A. Whalen; Wendel W. Raymond; Paul E. Carnell; Max T. Robinson; Janina Seemann; Teresa Alcoverro; Teresa Alcoverro; Holger Jänes; Fabio Bulleri; Pablo Jorgensen; Francesca Rossi; Stéphanie Cimon; Aaron W. E. Galloway;Significance Consumption transfers energy and materials through food chains and fundamentally influences ecosystem productivity. Therefore, mapping the distribution of consumer feeding intensity is key to understanding how environmental changes influence biodiversity, with consequent effects on trophic transfer and top–down impacts through food webs. Our global comparison of standardized bait consumption in shallow coastal habitats finds a peak in feeding intensity away from the equator that is better explained by the presence of particular consumer families than by latitude or temperature. This study complements recent demonstrations that changes in biodiversity can have similar or larger impacts on ecological processes than those of climate.
Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 165 Powered bymore_vert Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:UNSW Sydney Authors: Poore, Alistair; Gribben, Paul;doi: 10.26190/mppw-3a36
In this study, we used a trait-based approach to quantify morphological varability in subtidal rocky reefs dominated by the algal genus Sargassum along a latitudinal gradient, from subtropical to cool temperate sites, in south-eastern Australia (~900 km). We tested whether large-scale variation in sea surface temperature (SST), site exposure and nutrient availability can predict algal biomass and individual morphology. Morphological traits of Sargassum collected across 6 degree of latitude along the south-eastern coast of Australia
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/mppw-3a36&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/mppw-3a36&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:The Royal Society Funded by:ARC | How are weeds adapting to...ARC| How are weeds adapting to life in Australia? Quantifying the rate and direction of evolution in introduced species.Brandenburger, CR; Sherwin, WB; Creer, SM; Buitenwerf, R; Poore, AGB; Frankham, R; Finnerty, PB; Moles, AT;Thousands of species have been introduced to new ranges worldwide. These introductions provide opportunities for researchers to study evolutionary changes in form and function in response to new environmental conditions. However, almost all previous studies of morphological change in introduced species have compared introduced populations to populations from across the species' native range, so variation within native ranges probably confounds estimates of evolutionary change. In this study, we used microsatellites to locate the source population for the beach daisy Arctotheca populifolia that had been introduced to eastern Australia. We then compared four introduced populations from Australia with their original South African source population in a common-environment experiment. Despite being separated for less than 100 years, source and introduced populations of A. populifolia display substantial heritable morphological differences. Contrary to the evolution of increased competitive ability hypothesis, introduced plants were shorter than source plants, and introduced and source plants did not differ in total biomass. Contrary to predictions based on higher rainfall in the introduced range, introduced plants had smaller, thicker leaves than source plants. Finally, while source plants develop lobed adult leaves, introduced plants retain their spathulate juvenile leaf shape into adulthood. These changes indicate that rapid evolution in introduced species happens, but not always in the direction predicted by theory.
UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_79449Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.1713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_79449Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.1713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Frontiers Media SA Jennifer S. Clark; Jennifer S. Clark; Alistair G. B. Poore; Martina A. Doblin; Melinda A. Coleman;Species inhabiting warm-edge populations of their distribution are suggested to be at the forefront of global warming due to reduced fitness, limited gene flow and living close to their physiological thermal limits. Determining the scale that governs thermal niche and the functional responses of habitat-forming species to environmental stressors is critical for successful conservation efforts, particularly as coastal ecosystems are impacted by global change. Here, we examine the susceptibility of warm-edge populations to warming, in the habitat-forming macroalga, Hormosira banksii, from south-eastern Australia. We use a quantitative breeding design to quantify intraspecific variation in thermal performance (growth, ontogenic development and photosynthetic efficiency) of different genotypes sourced from sites at the equatorward distributional edge (warm-edge) and those toward the center of its distribution (non-edge). The genetic diversity and structure of H. banksii was also examined using microsatellite markers amongst the same sites. Our results found variable responses in thermal performance for growth and development. Warm-edge germlings grew optimally in lower temperatures tested and had narrower thermal breadth compared to non-edge germlings which grew in higher and more broader temperatures. Warm-edge germlings however, showed greater plasticity to tolerate high light indicated by a greater proportion of energy being dissipated as regulated non-photochemical quenching [Y(NPQ)] than non-regulated non-photochemical quenching [Y(NO)]. Overall genetic diversity was lower at the warm-edge location with evidence of increased structuring and reduced gene flow in comparison to the non-edge location. Evidence of genetic structuring was not found locally between high and low shore within sites. Together, these data suggest that non-edge populations may be “thermally buffered” from increased temperatures associated with ocean warming. Warm-edge populations of H. banksii, however, may be vulnerable to warming, due to narrower thermal breadth and sensitivity to higher temperatures, with genetic impoverishment through loss of individuals likely to further reduce population viability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Wiley Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT140100322Authors: Talia Peta Stelling‐Wood; Alistair G. B. Poore; Paul E. Gribben;AbstractGlobal patterns of plant biomass drive the distribution of much of the marine and terrestrial life on Earth. This is because their biomass and physical structure have important consequences for the communities they support by providing food and habitat. In terrestrial ecosystems, temperature is one of the major determinants of plant biomass and can influence plant and leaf morphology. In temperate marine systems, macroalgae are major habitat‐formers and commonly display highly variable morphology in response to local environmental conditions. Variation in their morphology, and thus habitat structure on temperate reefs, however, is poorly understood across large scales. In this study, we used a trait‐based approach to quantify morphological variability in subtidal rocky reefs dominated by the algal genus Sargassum along a latitudinal gradient, in southeastern Australia (~900 km). We tested whether large‐scale variation in sea surface temperature (SST), site exposure, and nutrient availability can predict algal biomass and individual morphology. We found Sargassum biomass declined with increasing maximum SST. We also found that individual morphology varied with abiotic ocean variables. Frond size and intraindividual variability in frond size decreased with increasing with distance from the equator, as SST decreased and nitrate concentration increased. The shape of fronds displayed no clear relationship with any of the abiotic variables measured. These results suggest climate change will cause significant changes to the structure of Sargassum habitats along the southeastern coast of Australia, resulting in an overall reduction in biomass and increase in the prevalence of thalli with large, highly variable fronds. Using a space‐for‐time approach means shifts in morphological trait values can be used as early warning signs of impending species declines and regime shifts. Consequently, by studying traits and how they change across large scales we can potentially predict and anticipate the impacts of environmental change on these communities.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.7714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.7714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 GermanyPublisher:The Royal Society Lars Gutow; Alistair G. B. Poore; Manuel A. Díaz Poblete; Vieia Villalobos; Martin Thiel;Large herbivores such as sea urchins and fish consume a high proportion of benthic primary production and frequently control the biomass of marine macrophytes. By contrast, small mesograzers, including gastropods and peracarid crustaceans, are abundant on seaweeds but have low per capita feeding rates and their impacts on marine macrophytes are difficult to predict. To quantify how mesograzers can affect macrophytes, we examined feeding damage by the herbivorous amphipodsSunamphitoe lessoniophilaandBircennasp., which construct burrows in the stipes of subtidal individuals of the kelpLessonia berteroanain northern-central Chile, southeast Pacific. Infested stipes showed a characteristic sequence of progressive tissue degeneration. The composition of the amphipod assemblages inside the burrows varied between the different stages of infestation of the burrows. Aggregations of grazers within burrows and microhabitat preference of the amphipods result in localized feeding, leading to stipe breakage and loss of substantial algal biomass. The estimated loss of biomass of single stipes varied between 1 and 77%. For the local kelp population, the amphipods caused an estimated loss of biomass of 24–44%. Consequently, small herbivores can cause considerable damage to large kelp species if their feeding activity is concentrated on structurally valuable algal tissue.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu