- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Saad Khan; Jyoti Shanker Pandey; Nicolas von Solms; Adam Paul Karcz;Abstract A core-flooding setup under high-pressure and low-temperature conditions was utilized to create artificial sedimentary CH4 hydrates, that were subjected to multistage injections of fresh CO2-N2 gas mixtures to study CH4 recovery yield, CO2 storage, and hydrate stability in response to various chemical treatments. The effect of chemical type (methyl alcohol, sodium dodecyl sulfate, and L-methionine), number of fresh injections, injection pressures, and influence of CO2 concentration were examined to support the sustainability and efficacy of the process. Electrical resistivity was also measured to investigate hydrate stability under different injection schemes and chemicals. Higher recovery and storage were observed in the presence of additives (compared to pure water) was observed, suggesting that enhanced but delayed formation kinetics at the gas/liquid interface and unstable mixed hydrate reformation were the major contributing factors. During gas injection, the gas/liquid boundary moved within the pore space, and nucleation initiated at this interface. Therefore, chemical additives were used to enhance, but delay, formation kinetics at the injected-gas/residual-water boundary. This caused release of additional in-situ heat, that dissociated CH4 hydrates, increased the total contact time, and improved gas diffusion. A porous morphology in the presence of chemicals may also provide additional pathways through hydrate films for improved gas migration. The number of fresh CO2-N2 injections increased CH4 recovery, and the efficiency of the injection scheme was dependent on initial hydrate saturation. No significant reduction in hydrate stability was observed after the first injection of dilute CO2 gas mixture. Multiple injections of fresh CO2-N2 gas may further enhance the hydrate stability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Jyoti Shanker Pandey; Yousef Jouljamal Daas; Nicolas von Solms;doi: 10.3390/pr8010124
In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500–3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000–3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or inhibitors for various applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8010124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8010124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jyoti Shanker Pandey; Nehir Öncü; Nicolas Von Solms;Nanoporous materials, such as metal-organic frameworks (MOFs), are renowned for their high selectivity as gas adsorbents due to their specific surface area, nanoporosity, and active surface chemistry. A significant challenge for their widespread application is reduced gas uptake in wet conditions, attributed to competitive adsorption between gas and water. Recent studies of gas adsorption in wet materials have typically used small amounts of powdered porous materials (in the milligram range) within very small reactors (1–5 mL). This leaves a gap in knowledge about gas adsorption behaviors in larger reactors and with increased MOF sample sizes (to the gram scale). Additionally, there has been a notable absence of experimental research on MOFs heavily saturated with water. In this study, we aimed to fill the gaps in our understanding of gas adsorption in wet conditions by measuring CH4 adsorption in MOFs. To do this, we used larger MOF samples (in grams) and a large-volume reactor. Our selection of commercially available MOFs, including HKUST-1, ZIF-8, MOF-303, and activated carbon, was based on their widespread application, available previous research, and differences in hydrophobicity. Using a volumetric approach, we measured high-pressure isotherms (at T = 274.15 K) to compare the moles of gas adsorbed under both dry and wet conditions across different MOFs and weights. The experimental results indicate that water decreases total CH4 adsorption in MOFs, with a more pronounced decrease in hydrophilic MOFs compared to hydrophobic ones at lower pressures. However, hydrophilic MOFs exhibited stepped isotherms at higher pressures, suggesting water converts to hydrate, positively impacting total gas uptake. In contrast, the hydrophobic ZIF-8 did not promote hydrate formation due to particle aggregation in the presence of water, leading to a loss of surface area and surface charge. This study highlights the additional challenges associated with hydrate-MOF synergy when experiments are scaled up and larger sample sizes are used. Future studies should consider using monolith or pellet forms of MOFs to address the limitations of powdered MOFs in scale-up studies.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Authors: Jyoti Shanker Pandey; Charilaos Karantonidis; Qian Ouyang; Nicolas von Solms;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.1c00685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.1c00685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Qian Ouyang; Jyoti Shanker Pandey; Nicolas von Solms;Abstract Recent but limited studies have shown that multistep slow depressurization based on mixed CH4/CO2 hydrate dissociation can enhance CH4 recovery and increases CO2 storage after CO2 injection into CH4 hydrate [1,2]. For the first time, the resistivity variation and gas recovery and storage variation was investigated to study the change in hydrate saturation and production/storage yield. Lab-scale CH4 and CO2 rich mixed hydrates were synthesized to mimic the production and injection well scenario. The mixed hydrates were synthesized in sandstone with moderate to high water saturation using two different CH4/CO2 gas mixtures. Furthermore, mixed CH4/CO2 hydrates were dissociated three to six steps based on cyclic depressurization. Pressure, resistivity and gas chromatography data were collected. The presence of two thermodynamic stability zones provided an opportunity for additional CH4 recovery and CO2 storage during mixed hydrate dissociation. Gas and water migration between the injection and production well caused CO2 hydrate reformation, improvement in CO2 sweep area and movement of the CO2 hydrate front toward the production well. Multiple peaks in CH4 recovery and CO2 storage suggest major dissociation and reformation. Peak values were independent of mixed hydrate type. Peaks values of CH4 rich hydrates occurred at high pressure than peak values of CO2 rich hydrates. The slight change in resistance during depressurization below pure CH4 hydrate stability pressure confirms the loss of CH4 hydrate mass recovered by the formation of CO2 hydrate mass. This study discusses the correlation between the change in resistivity and type of guest molecule and its concentration and initial water saturation. The results of this study will be useful to explore the application of slow depressurization for the dissociation of CH4/CO2 mixed hydrates to improve CH4 recovery and CO2 storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2021.131915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2021.131915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Jyoti Shanker Pandey; Charilaos Karantonidis; Adam Paul Karcz; Nicolas von Solms;doi: 10.3390/en13205238
CO2-rich gas injection into natural gas hydrate reservoirs is proposed as a carbon-neutral, novel technique to store CO2 while simultaneously producing CH4 gas from methane hydrate deposits without disturbing geological settings. This method is limited by the mass transport barrier created by hydrate film formation at the liquid–gas interface. The very low gas diffusivity through hydrate film formed at this interface causes low CO2 availability at the gas–hydrate interface, thus lowering the recovery and replacement efficiency during CH4-CO2 exchange. In a first-of-its-kind study, we have demonstrate the successful application of low dosage methanol to enhance gas storage and recovery and compare it with water and other surface-active kinetic promoters including SDS and L-methionine. Our study shows 40–80% CH4 recovery, 83–93% CO2 storage and 3–10% CH4-CO2 replacement efficiency in the presence of 5 wt% methanol, and further improvement in the swapping process due to a change in temperature from 1–4 °C is observed. We also discuss the influence of initial water saturation (30–66%), hydrate morphology (grain-coating and pore-filling) and hydrate surface area on the CH4-CO2 hydrate swapping. Very distinctive behavior in methane recovery caused by initial water saturation (above and below Swi = 0.35) and hydrate morphology is also discussed. Improved CO2 storage and methane recovery in the presence of methanol is attributed to its dual role as anti-agglomerate and thermodynamic driving force enhancer between CH4-CO2 hydrate phase boundaries when methanol is used at a low concentration (5 wt%). The findings of this study can be useful in exploring the usage of low dosage, bio-friendly, anti-agglomerate and hydrate inhibition compounds in improving CH4 recovery and storing CO2 in hydrate reservoirs without disturbing geological formation. To the best of the authors’ knowledge, this is the first experimental study to explore the novel application of an anti-agglomerate and hydrate inhibitor in low dosage to address the CO2 hydrate mass transfer barrier created at the gas–liquid interface to enhance CH4-CO2 hydrate exchange. Our study also highlights the importance of prior information about methane hydrate reservoirs, such as residual water saturation, degree of hydrate saturation and hydrate morphology, before applying the CH4-CO2 hydrate swapping technique.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Qian Ouyang; Junjie Zheng; Jyoti Shanker Pandey; Nicolas von Solms; Praveen Linga;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Qian Ouyang; Jyoti Shanker Pandey; Nicolas von Solms;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jyoti Pandey; Saad Khan; Nicolas von Solms;doi: 10.3390/en15186814
We report a quantitative study of the effect of low-concentration methanol (MeOH) on the formation and dissociation of hydrates based on CH4 and CO2/N2 guest molecules. The kinetic promotion and dissociation ability of MeOH is also compared with the anionic surfactant sodium dodecyl sulfate (SDS, 100 ppm, 50 ppm). The effects of concentration changes (1 wt% and 5 wt%), pressure (p = 80–120 bar), guest molecules (CH4 and CO2), and temperature (1 °C and below 0 °C) are investigated using slow constant ramp (SCR) and isothermal (IT) temperature schemes. The results show that the kinetics are affected by the guest molecule and MeOH concentration. For CH4 gas, 5 wt% MeOH shows better promotion, while for CO2/N2 gas mixtures, 1 wt% MeOH gives better promotion. This conclusion agrees well with our previous results demonstrating optimal CH4 recovery and CO2 storage in the presence of 5 wt% MeOH. The promoting and inhibiting properties of MeOH could be beneficial in CH4 production from gas hydrate using CO2-rich gas injection, as delayed hydrate film formation in the presence of MeOH could improve both CH4 recovery and CO2 storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Jyoti Pandey; Nicolas Solms;doi: 10.3390/en12122309
CH4–CO2 replacement is a carbon-negative, safer gas production technique to produce methane gas from natural gas hydrate reservoirs by injecting pure CO2 or other gas mixtures containing CO2. Laboratory-scale experiments show that this technique produces low methane volume and has a slow replacement rate due to the mass transfer barrier created due to impermeable CO2 hydrate layer formation, thus making the process commercially unattractive. This mass-transfer barrier can be reduced through pressure reduction techniques and chemical techniques; however, very few studies have focused on depressurization-assisted and chemical-assisted CH4–CO2 replacement to lower mass-transfer barriers and there are many unknowns. In this work, we qualitatively and quantitatively investigated the effect of the pressure reduction and presence of a hydrate promoter on mixed hydrate stability, CH4 recovery, and risk of water production during CH4–CO2 exchange. Exchange experiments were carried out using the 500 ppm sodium dodecyl sulfate (SDS) solution inside a high-pressure stirred reactor. Our results indicated that mixed hydrate stability and methane recovery depends on the degree of pressure reduction, type, and composition of injected gas. Final selection between CO2 and CO2 + N2 gas depends on the tradeoff between mixed hydrate stability pressure and methane recovery. Hydrate morphology studies suggest that production of water during the CH4–CO2 exchange is a stochastic phenomenon that is dependent on many parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Saad Khan; Jyoti Shanker Pandey; Nicolas von Solms; Adam Paul Karcz;Abstract A core-flooding setup under high-pressure and low-temperature conditions was utilized to create artificial sedimentary CH4 hydrates, that were subjected to multistage injections of fresh CO2-N2 gas mixtures to study CH4 recovery yield, CO2 storage, and hydrate stability in response to various chemical treatments. The effect of chemical type (methyl alcohol, sodium dodecyl sulfate, and L-methionine), number of fresh injections, injection pressures, and influence of CO2 concentration were examined to support the sustainability and efficacy of the process. Electrical resistivity was also measured to investigate hydrate stability under different injection schemes and chemicals. Higher recovery and storage were observed in the presence of additives (compared to pure water) was observed, suggesting that enhanced but delayed formation kinetics at the gas/liquid interface and unstable mixed hydrate reformation were the major contributing factors. During gas injection, the gas/liquid boundary moved within the pore space, and nucleation initiated at this interface. Therefore, chemical additives were used to enhance, but delay, formation kinetics at the injected-gas/residual-water boundary. This caused release of additional in-situ heat, that dissociated CH4 hydrates, increased the total contact time, and improved gas diffusion. A porous morphology in the presence of chemicals may also provide additional pathways through hydrate films for improved gas migration. The number of fresh CO2-N2 injections increased CH4 recovery, and the efficiency of the injection scheme was dependent on initial hydrate saturation. No significant reduction in hydrate stability was observed after the first injection of dilute CO2 gas mixture. Multiple injections of fresh CO2-N2 gas may further enhance the hydrate stability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Jyoti Shanker Pandey; Yousef Jouljamal Daas; Nicolas von Solms;doi: 10.3390/pr8010124
In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500–3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000–3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or inhibitors for various applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8010124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8010124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jyoti Shanker Pandey; Nehir Öncü; Nicolas Von Solms;Nanoporous materials, such as metal-organic frameworks (MOFs), are renowned for their high selectivity as gas adsorbents due to their specific surface area, nanoporosity, and active surface chemistry. A significant challenge for their widespread application is reduced gas uptake in wet conditions, attributed to competitive adsorption between gas and water. Recent studies of gas adsorption in wet materials have typically used small amounts of powdered porous materials (in the milligram range) within very small reactors (1–5 mL). This leaves a gap in knowledge about gas adsorption behaviors in larger reactors and with increased MOF sample sizes (to the gram scale). Additionally, there has been a notable absence of experimental research on MOFs heavily saturated with water. In this study, we aimed to fill the gaps in our understanding of gas adsorption in wet conditions by measuring CH4 adsorption in MOFs. To do this, we used larger MOF samples (in grams) and a large-volume reactor. Our selection of commercially available MOFs, including HKUST-1, ZIF-8, MOF-303, and activated carbon, was based on their widespread application, available previous research, and differences in hydrophobicity. Using a volumetric approach, we measured high-pressure isotherms (at T = 274.15 K) to compare the moles of gas adsorbed under both dry and wet conditions across different MOFs and weights. The experimental results indicate that water decreases total CH4 adsorption in MOFs, with a more pronounced decrease in hydrophilic MOFs compared to hydrophobic ones at lower pressures. However, hydrophilic MOFs exhibited stepped isotherms at higher pressures, suggesting water converts to hydrate, positively impacting total gas uptake. In contrast, the hydrophobic ZIF-8 did not promote hydrate formation due to particle aggregation in the presence of water, leading to a loss of surface area and surface charge. This study highlights the additional challenges associated with hydrate-MOF synergy when experiments are scaled up and larger sample sizes are used. Future studies should consider using monolith or pellet forms of MOFs to address the limitations of powdered MOFs in scale-up studies.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Authors: Jyoti Shanker Pandey; Charilaos Karantonidis; Qian Ouyang; Nicolas von Solms;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.1c00685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.1c00685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Qian Ouyang; Jyoti Shanker Pandey; Nicolas von Solms;Abstract Recent but limited studies have shown that multistep slow depressurization based on mixed CH4/CO2 hydrate dissociation can enhance CH4 recovery and increases CO2 storage after CO2 injection into CH4 hydrate [1,2]. For the first time, the resistivity variation and gas recovery and storage variation was investigated to study the change in hydrate saturation and production/storage yield. Lab-scale CH4 and CO2 rich mixed hydrates were synthesized to mimic the production and injection well scenario. The mixed hydrates were synthesized in sandstone with moderate to high water saturation using two different CH4/CO2 gas mixtures. Furthermore, mixed CH4/CO2 hydrates were dissociated three to six steps based on cyclic depressurization. Pressure, resistivity and gas chromatography data were collected. The presence of two thermodynamic stability zones provided an opportunity for additional CH4 recovery and CO2 storage during mixed hydrate dissociation. Gas and water migration between the injection and production well caused CO2 hydrate reformation, improvement in CO2 sweep area and movement of the CO2 hydrate front toward the production well. Multiple peaks in CH4 recovery and CO2 storage suggest major dissociation and reformation. Peak values were independent of mixed hydrate type. Peaks values of CH4 rich hydrates occurred at high pressure than peak values of CO2 rich hydrates. The slight change in resistance during depressurization below pure CH4 hydrate stability pressure confirms the loss of CH4 hydrate mass recovered by the formation of CO2 hydrate mass. This study discusses the correlation between the change in resistivity and type of guest molecule and its concentration and initial water saturation. The results of this study will be useful to explore the application of slow depressurization for the dissociation of CH4/CO2 mixed hydrates to improve CH4 recovery and CO2 storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2021.131915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2021.131915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Jyoti Shanker Pandey; Charilaos Karantonidis; Adam Paul Karcz; Nicolas von Solms;doi: 10.3390/en13205238
CO2-rich gas injection into natural gas hydrate reservoirs is proposed as a carbon-neutral, novel technique to store CO2 while simultaneously producing CH4 gas from methane hydrate deposits without disturbing geological settings. This method is limited by the mass transport barrier created by hydrate film formation at the liquid–gas interface. The very low gas diffusivity through hydrate film formed at this interface causes low CO2 availability at the gas–hydrate interface, thus lowering the recovery and replacement efficiency during CH4-CO2 exchange. In a first-of-its-kind study, we have demonstrate the successful application of low dosage methanol to enhance gas storage and recovery and compare it with water and other surface-active kinetic promoters including SDS and L-methionine. Our study shows 40–80% CH4 recovery, 83–93% CO2 storage and 3–10% CH4-CO2 replacement efficiency in the presence of 5 wt% methanol, and further improvement in the swapping process due to a change in temperature from 1–4 °C is observed. We also discuss the influence of initial water saturation (30–66%), hydrate morphology (grain-coating and pore-filling) and hydrate surface area on the CH4-CO2 hydrate swapping. Very distinctive behavior in methane recovery caused by initial water saturation (above and below Swi = 0.35) and hydrate morphology is also discussed. Improved CO2 storage and methane recovery in the presence of methanol is attributed to its dual role as anti-agglomerate and thermodynamic driving force enhancer between CH4-CO2 hydrate phase boundaries when methanol is used at a low concentration (5 wt%). The findings of this study can be useful in exploring the usage of low dosage, bio-friendly, anti-agglomerate and hydrate inhibition compounds in improving CH4 recovery and storing CO2 in hydrate reservoirs without disturbing geological formation. To the best of the authors’ knowledge, this is the first experimental study to explore the novel application of an anti-agglomerate and hydrate inhibitor in low dosage to address the CO2 hydrate mass transfer barrier created at the gas–liquid interface to enhance CH4-CO2 hydrate exchange. Our study also highlights the importance of prior information about methane hydrate reservoirs, such as residual water saturation, degree of hydrate saturation and hydrate morphology, before applying the CH4-CO2 hydrate swapping technique.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Qian Ouyang; Junjie Zheng; Jyoti Shanker Pandey; Nicolas von Solms; Praveen Linga;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Qian Ouyang; Jyoti Shanker Pandey; Nicolas von Solms;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jyoti Pandey; Saad Khan; Nicolas von Solms;doi: 10.3390/en15186814
We report a quantitative study of the effect of low-concentration methanol (MeOH) on the formation and dissociation of hydrates based on CH4 and CO2/N2 guest molecules. The kinetic promotion and dissociation ability of MeOH is also compared with the anionic surfactant sodium dodecyl sulfate (SDS, 100 ppm, 50 ppm). The effects of concentration changes (1 wt% and 5 wt%), pressure (p = 80–120 bar), guest molecules (CH4 and CO2), and temperature (1 °C and below 0 °C) are investigated using slow constant ramp (SCR) and isothermal (IT) temperature schemes. The results show that the kinetics are affected by the guest molecule and MeOH concentration. For CH4 gas, 5 wt% MeOH shows better promotion, while for CO2/N2 gas mixtures, 1 wt% MeOH gives better promotion. This conclusion agrees well with our previous results demonstrating optimal CH4 recovery and CO2 storage in the presence of 5 wt% MeOH. The promoting and inhibiting properties of MeOH could be beneficial in CH4 production from gas hydrate using CO2-rich gas injection, as delayed hydrate film formation in the presence of MeOH could improve both CH4 recovery and CO2 storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Jyoti Pandey; Nicolas Solms;doi: 10.3390/en12122309
CH4–CO2 replacement is a carbon-negative, safer gas production technique to produce methane gas from natural gas hydrate reservoirs by injecting pure CO2 or other gas mixtures containing CO2. Laboratory-scale experiments show that this technique produces low methane volume and has a slow replacement rate due to the mass transfer barrier created due to impermeable CO2 hydrate layer formation, thus making the process commercially unattractive. This mass-transfer barrier can be reduced through pressure reduction techniques and chemical techniques; however, very few studies have focused on depressurization-assisted and chemical-assisted CH4–CO2 replacement to lower mass-transfer barriers and there are many unknowns. In this work, we qualitatively and quantitatively investigated the effect of the pressure reduction and presence of a hydrate promoter on mixed hydrate stability, CH4 recovery, and risk of water production during CH4–CO2 exchange. Exchange experiments were carried out using the 500 ppm sodium dodecyl sulfate (SDS) solution inside a high-pressure stirred reactor. Our results indicated that mixed hydrate stability and methane recovery depends on the degree of pressure reduction, type, and composition of injected gas. Final selection between CO2 and CO2 + N2 gas depends on the tradeoff between mixed hydrate stability pressure and methane recovery. Hydrate morphology studies suggest that production of water during the CH4–CO2 exchange is a stochastic phenomenon that is dependent on many parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu