- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Czech RepublicPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAR, EC | Synergy-PlagueEC| MONOSTAR ,EC| Synergy-PlagueAuthors: Ulf Büntgen; Jan Esper;AbstractCorrelation coefficients are widely used to identify and quantify climate signals in proxy archives. Significant relationships between tree-ring chronologies and meteorological measurements are typically applied by dendroclimatologists to distinguish between more or less relevant climate variation for ring formation. While insignificant growth-climate correlations are usually found with cold season months, we argue that weak relationships with high summer temperatures not necessarily disprove their importance for xylogenesis. Here, we use maximum latewood density records from ten treeline sites between northern Scandinavia and southern Spain to demonstrate how monthly growth-climate correlations change from narrow unimodal to wide bimodal seasons when vegetation periods become longer and warmer. Statistically meaningful relationships occur when minimum temperatures exceed ‘biological zero’ at around 5° C. We conclude that the absence of evidence for statistical significance between tree growth and the warmest summer temperatures at Mediterranean sites is no evidence of absence for the physiological importance of high summer temperatures for ring formation. Since correlation should never be confused with causation, statistical values require mechanistic understanding, and different interpretations are needed for insignificant correlations within and outside the growing season.
International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-024-02706-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-024-02706-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Book 2022Embargo end date: 06 Oct 2022 Switzerland, Czech Republic, France, Germany, United Kingdom, SpainPublisher:Wiley Funded by:EC | INTACTEC| INTACTSteidinger, Brian S.; Büntgen, Ulf; Stobbe, Uli; Tegel, Willy; Sproll, Ludger; Haeni, Matthias; Moser, Barbara; Bagi, István; Bonet, José‐Antonio; Buée, Marc; Dauphin, Benjamin; Martínez‐Peña, Fernando; Molinier, Virginie; Zweifel, Roman; Egli, Simon; Peter, Martina;AbstractGlobal warming is pushing populations outside their range of physiological tolerance. According to the environmental envelope framework, the most vulnerable populations occur near the climatic edge of their species' distributions. In contrast, populations from the climatic center of the species range should be relatively buffered against climate warming. We tested this latter prediction using a combination of linear mixed effects and machine learning algorithms on an extensive, citizen‐scientist generated dataset on the fruitbody productivity of the Burgundy (aka summer) truffle (Tuber aestivum Vittad.), a keystone, ectomycorrhizal tree‐symbiont occurring on a wide range of temperate climates. T. aestivum's fruitbody productivity was monitored at 3‐week resolution over up to 8 continuous years at 20 sites distributed in the climatic center of its European distribution in southwest Germany and Switzerland. We found that T. aestivum fruitbody production is more sensitive to summer drought than would be expected from the breadth of its species' climatic niche. The monitored populations occurring nearly 5°C colder than the edge of their species' climatic distribution. However, interannual fruitbody productivity (truffle mass year−1) fell by a median loss of 22% for every 1°C increase in summer temperature over a site's 30‐year mean. Among the most productive monitored populations, the temperature sensitivity was even higher, with single summer temperature anomalies of 3°C sufficient to stop fruitbody production altogether. Interannual truffle productivity was also related to the phenology of host trees, with ~22 g less truffle mass for each 1‐day reduction in the length of the tree growing season. Increasing summer drought extremes are therefore likely to reduce fruiting among summer truffle populations throughout Central Europe. Our results suggest that European T. aestivum may be a mosaic of vulnerable populations, sensitive to climate‐driven declines at lower thresholds than implied by its species distribution model.
Global Change Biolog... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/245464Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAcitaREA Repositorio Electrónico AgroalimentarioArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: citaREA Repositorio Electrónico AgroalimentarioRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/245464Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAcitaREA Repositorio Electrónico AgroalimentarioArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: citaREA Repositorio Electrónico AgroalimentarioRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Czech RepublicPublisher:Oxford University Press (OUP) Funded by:EC | MONOSTAREC| MONOSTARUlf Büntgen; Clive Oppenheimer; Paco Li; Michael Frachetti; Jan Esper; Max C A Torbenson; Paul J Krusic;Abstract In 1977 California, authorities responded to an extreme drought with an unprecedented state order to drastically reduce domestic water usage and leave countless newly built swimming pools empty. These curved pools became “playgrounds” for inspired surfers to develop professional vertical skateboarding in the Los Angeles area. Industrial production of polyurethane, and the advent of digital photography, laser printing, and high gloss mass media further contributed to the explosive popularization of skateboarding, creating a global subculture and multibillion-dollar industry that still impacts music, fashion, and lifestyle worldwide. Our interdisciplinary investigation demonstrates that neither the timing nor the location of the origin of professional skateboarding was random. This modern case study highlights how environmental changes can affect human behavior, transform culture, and engender technical innovation in the Anthropocene.
PNAS Nexus arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgad395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PNAS Nexus arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgad395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 28 Jul 2021 Australia, Australia, Germany, Switzerland, Finland, France, United Kingdom, France, United Kingdom, France, United Kingdom, Czech Republic, France, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAREC| MONOSTARKurt Nicolussi; Vladimir S. Myglan; Markus Stoffel; Bao Yang; Bao Yang; Kristina Seftigen; Kristina Seftigen; Paul J. Krusic; Paul J. Krusic; Josef Ludescher; Jan Esper; Jianglin Wang; Jianglin Wang; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Ulf Büntgen; Guobao Xu; Guobao Xu; Matthew W. Salzer; Étienne Boucher; Étienne Boucher; Philipp Hochreuther; Samuli Helama; Ernesto Tejedor; Frederick Reinig; Clive Oppenheimer; Clive Oppenheimer; Fabio Gennaretti; Achim Bräuning; A. Stine; Christophe Corona; Sebastian Guillet; Peter Huybers; Wolfgang Jens-Henrik Meier; A. M. Trevino; Paolo Cherubini; Björn E. Gunnarson; Malcolm K. Hughes; Dominique Arseneault; Kevin J. Anchukaitis; Joel Guiot; Kathy Allen; Kathy Allen; Olga V. Churakova (Sidorova); Jussi Grießinger; Scott St. George; Rob Wilson; Rob Wilson; Snigdhansu Chatterjee; Valerie Trouet;doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
AbstractTree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2021Publisher:The Royal Society Yan, Chuan; Huidong Tian; Wan, Xinru; Jinxing He; Guoyu Ren; Büntgen, Ulf; Stenseth, Nils Chr.; Zhang, Zhibin;Climate change may contribute to the spatio-temporal occurrence of disasters. Long-term studies of either homogeneous or heterogeneous responses of historical disasters to climate change are, however, limited by the quality and quantity of the available proxy data. Here we reconstruct spatio-temporal patterns of five types of disasters in China during the period AD 1368–1911. Our analyses of these time series reveal that warmer temperatures decreased the occurrence of disasters in the monsoon-affected parts of central-east China, but it increased the frequency and intensity of disasters along the boundary of arid and humid conditions in parts of southwest and northeast China, likely driven by the interplay among monsoon, westerlies, polar vortex and variation of temperature. Moreover, we show that drought and flood events had cascading effects on the occurrences of locust outbreaks, famine and human epidemics. Our findings suggest that climate can contribute to the spatio-temporal occurrence of disasters, and therefore may contribute to an improvement of China's regional to national risk management of future climate and environmental change.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13949700.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13949700.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 ItalyPublisher:The Royal Society Paul J. Krusic; Paul J. Krusic; Hannes Jenny; Ulf Büntgen; J. Diego Galván; Alma Piermattei; Kurt Bollmann;In many species, decreasing body size has been associated with increasing temperatures. Although climate-induced phenotypic shifts, and evolutionary impacts, can affect the structure and functioning of marine and terrestrial ecosystems through biological and metabolic rules, evidence for shrinking body size is often challenged by (i) relatively short intervals of observation, (ii) a limited number of individuals, and (iii) confinement to small and isolated populations. To overcome these issues and provide important multi-species, long-term information for conservation managers and scientists, we compiled and analysed 222 961 measurements of eviscerated body weight, 170 729 measurements of hind foot length and 145 980 measurements of lower jaw length, in the four most abundant Alpine ungulate species: ibex ( Capra ibex ), chamois ( Rupicapra rupicapra ), red deer ( Cervus elaphus ) and roe deer ( Capreolus capreolus ). Regardless of age, sex and phylogeny, the body mass and size of these sympatric animals, from the eastern Swiss Alps, remained stable between 1991 and 2013. Neither global warming nor local hunting influenced the fitness of the wild ungulates studied at a detectable level. However, we cannot rule out possible counteracting effects of enhanced nutritional resources associated with longer and warmer growing seasons, as well as the animals' ability to migrate along extensive elevational gradients in the highly diversified alpine landscape of this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.200196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.200196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Czech Republic, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAR, DFGEC| MONOSTAR ,DFGEileen Kuhl; Jan Esper; Lea Schneider; Valerie Trouet; Marcel Kunz; Lara Klippel; Ulf Büntgen; Claudia Hartl;AbstractEurope experienced severe heat waves during the last decade, which impacted ecological and societal systems and are likely to increase under projected global warming. A better understanding of pre-industrial warm-season changes is needed to contextualize these recent trends and extremes. Here, we introduce a network of 352 living and relict larch trees (Larix decidua Mill.) from the Matter and Simplon valleys in the Swiss Alps to develop a maximum latewood density (MXD) chronology calibrating at r = 0.8 (p > 0.05, 1901–2017 CE) against May–August temperatures over Western Europe. Machine learning is applied to identify historical wood samples aligning with growth characteristics of sites from elevations above 1900 m asl to extend the modern part of the chronology back to 881 CE. The new Alpine record reveals warmer conditions in the tenth century, followed by an extended cold period during the late Medieval times, a less-pronounced Little Ice Age culminating in the 1810s, and prolonged anthropogenic warming until present. The Samalas eruption likely triggered the coldest reconstructed summer in Western Europe in 1258 CE (-2.32 °C), which is in line with a recently published MXD-based reconstruction from the Spanish Pyrenees. Whereas the new Alpine reconstruction is potentially constrained in the lowest frequency, centennial timescale domain, it overcomes variance biases in existing state-of-the-art reconstructions and sets a new standard in site-control of historical samples and calibration/ verification statistics.
Climate Dynamics arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-024-07195-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Climate Dynamics arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-024-07195-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:The Royal Society Yan, Chuan; Huidong Tian; Wan, Xinru; Jinxing He; Guoyu Ren; Büntgen, Ulf; Stenseth, Nils Chr.; Zhang, Zhibin;Climate change may contribute to the spatio-temporal occurrence of disasters. Long-term studies of either homogeneous or heterogeneous responses of historical disasters to climate change are, however, limited by the quality and quantity of the available proxy data. Here we reconstruct spatio-temporal patterns of five types of disasters in China during the period AD 1368–1911. Our analyses of these time series reveal that warmer temperatures decreased the occurrence of disasters in the monsoon-affected parts of central-east China, but it increased the frequency and intensity of disasters along the boundary of arid and humid conditions in parts of southwest and northeast China, likely driven by the interplay among monsoon, westerlies, polar vortex and variation of temperature. Moreover, we show that drought and flood events had cascading effects on the occurrences of locust outbreaks, famine and human epidemics. Our findings suggest that climate can contribute to the spatio-temporal occurrence of disasters, and therefore may contribute to an improvement of China's regional to national risk management of future climate and environmental change.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13949703.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13949703.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 06 Jun 2020 Italy, France, United KingdomPublisher:Springer Science and Business Media LLC Ulf Büntgen; Ulf Büntgen; Paul J. Krusic; Beat Wermelinger; Jan Esper; Frederick Reinig; Andrew M. Liebhold; Andrew M. Liebhold; Paolo Cherubini; Alain Roques; Alma Piermattei; Simon Egli; Daniel Nievergelt;AbstractThe sudden interruption of recurring larch budmoth (LBM; Zeiraphera diniana or griseana Gn.) outbreaks across the European Alps after 1982 was surprising, because populations had regularly oscillated every 8–9 years for the past 1200 years or more. Although ecophysiological evidence was limited and underlying processes remained uncertain, climate change has been indicated as a possible driver of this disruption. An unexpected, recent return of LBM population peaks in 2017 and 2018 provides insight into this insect’s climate sensitivity. Here, we combine meteorological and dendrochronological data to explore the influence of temperature variation and atmospheric circulation on cyclic LBM outbreaks since the early 1950s. Anomalous cold European winters, associated with a persistent negative phase of the North Atlantic Oscillation, coincide with four consecutive epidemics between 1953 and 1982, and any of three warming-induced mechanisms could explain the system’s failure thereafter: (1) high egg mortality, (2) asynchrony between egg hatch and foliage growth, and (3) upward shifts of outbreak epicentres. In demonstrating that LBM populations continued to oscillate every 8–9 years at sub-outbreak levels, this study emphasizes the relevance of winter temperatures on trophic interactions between insects and their host trees, as well as the importance of separating natural from anthropogenic climate forcing on population behaviour.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02627834/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02627834/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-019-04585-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02627834/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02627834/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-019-04585-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Austria, NorwayPublisher:The Royal Society Einar Heegaard; Beatrice Senn-Irlet; Ulf Büntgen; Simon Egli; Irmgard Krisai-Greilhuber; Klaus Høiland; Jeffrey M. Diez; Carrie Andrew; Carrie Andrew; Håvard Kauserud;Many plant and animal species are changing their latitudinal and/or altitudinal distributions in response to climate change, but whether fungi show similar changes is largely unknown. Here, we use historical fungal fruit body records from the European Alps to assess altitudinal changes in fungal fruiting between 1960 and 2010. We observe that many fungal species are fruiting at significantly higher elevations in 2010 compared to 1960, and especially so among soil-dwelling fungi. Wood-decay fungi, being dependent on the presence of one or a few host trees, show a slower response. Species growing at higher elevations changed their altitudinal fruiting patterns significantly more than lowland species. Environmental changes in high altitudes may lead to proportionally stronger responses, since high-altitude species live closer to their physiological limit. These aboveground changes in fruiting patterns probably mirror corresponding shifts in belowground fungal communities, suggesting parallel shifts in important ecosystem functions.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Czech RepublicPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAR, EC | Synergy-PlagueEC| MONOSTAR ,EC| Synergy-PlagueAuthors: Ulf Büntgen; Jan Esper;AbstractCorrelation coefficients are widely used to identify and quantify climate signals in proxy archives. Significant relationships between tree-ring chronologies and meteorological measurements are typically applied by dendroclimatologists to distinguish between more or less relevant climate variation for ring formation. While insignificant growth-climate correlations are usually found with cold season months, we argue that weak relationships with high summer temperatures not necessarily disprove their importance for xylogenesis. Here, we use maximum latewood density records from ten treeline sites between northern Scandinavia and southern Spain to demonstrate how monthly growth-climate correlations change from narrow unimodal to wide bimodal seasons when vegetation periods become longer and warmer. Statistically meaningful relationships occur when minimum temperatures exceed ‘biological zero’ at around 5° C. We conclude that the absence of evidence for statistical significance between tree growth and the warmest summer temperatures at Mediterranean sites is no evidence of absence for the physiological importance of high summer temperatures for ring formation. Since correlation should never be confused with causation, statistical values require mechanistic understanding, and different interpretations are needed for insignificant correlations within and outside the growing season.
International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-024-02706-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-024-02706-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Book 2022Embargo end date: 06 Oct 2022 Switzerland, Czech Republic, France, Germany, United Kingdom, SpainPublisher:Wiley Funded by:EC | INTACTEC| INTACTSteidinger, Brian S.; Büntgen, Ulf; Stobbe, Uli; Tegel, Willy; Sproll, Ludger; Haeni, Matthias; Moser, Barbara; Bagi, István; Bonet, José‐Antonio; Buée, Marc; Dauphin, Benjamin; Martínez‐Peña, Fernando; Molinier, Virginie; Zweifel, Roman; Egli, Simon; Peter, Martina;AbstractGlobal warming is pushing populations outside their range of physiological tolerance. According to the environmental envelope framework, the most vulnerable populations occur near the climatic edge of their species' distributions. In contrast, populations from the climatic center of the species range should be relatively buffered against climate warming. We tested this latter prediction using a combination of linear mixed effects and machine learning algorithms on an extensive, citizen‐scientist generated dataset on the fruitbody productivity of the Burgundy (aka summer) truffle (Tuber aestivum Vittad.), a keystone, ectomycorrhizal tree‐symbiont occurring on a wide range of temperate climates. T. aestivum's fruitbody productivity was monitored at 3‐week resolution over up to 8 continuous years at 20 sites distributed in the climatic center of its European distribution in southwest Germany and Switzerland. We found that T. aestivum fruitbody production is more sensitive to summer drought than would be expected from the breadth of its species' climatic niche. The monitored populations occurring nearly 5°C colder than the edge of their species' climatic distribution. However, interannual fruitbody productivity (truffle mass year−1) fell by a median loss of 22% for every 1°C increase in summer temperature over a site's 30‐year mean. Among the most productive monitored populations, the temperature sensitivity was even higher, with single summer temperature anomalies of 3°C sufficient to stop fruitbody production altogether. Interannual truffle productivity was also related to the phenology of host trees, with ~22 g less truffle mass for each 1‐day reduction in the length of the tree growing season. Increasing summer drought extremes are therefore likely to reduce fruiting among summer truffle populations throughout Central Europe. Our results suggest that European T. aestivum may be a mosaic of vulnerable populations, sensitive to climate‐driven declines at lower thresholds than implied by its species distribution model.
Global Change Biolog... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/245464Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAcitaREA Repositorio Electrónico AgroalimentarioArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: citaREA Repositorio Electrónico AgroalimentarioRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/245464Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAcitaREA Repositorio Electrónico AgroalimentarioArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: citaREA Repositorio Electrónico AgroalimentarioRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Czech RepublicPublisher:Oxford University Press (OUP) Funded by:EC | MONOSTAREC| MONOSTARUlf Büntgen; Clive Oppenheimer; Paco Li; Michael Frachetti; Jan Esper; Max C A Torbenson; Paul J Krusic;Abstract In 1977 California, authorities responded to an extreme drought with an unprecedented state order to drastically reduce domestic water usage and leave countless newly built swimming pools empty. These curved pools became “playgrounds” for inspired surfers to develop professional vertical skateboarding in the Los Angeles area. Industrial production of polyurethane, and the advent of digital photography, laser printing, and high gloss mass media further contributed to the explosive popularization of skateboarding, creating a global subculture and multibillion-dollar industry that still impacts music, fashion, and lifestyle worldwide. Our interdisciplinary investigation demonstrates that neither the timing nor the location of the origin of professional skateboarding was random. This modern case study highlights how environmental changes can affect human behavior, transform culture, and engender technical innovation in the Anthropocene.
PNAS Nexus arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgad395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PNAS Nexus arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgad395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 28 Jul 2021 Australia, Australia, Germany, Switzerland, Finland, France, United Kingdom, France, United Kingdom, France, United Kingdom, Czech Republic, France, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAREC| MONOSTARKurt Nicolussi; Vladimir S. Myglan; Markus Stoffel; Bao Yang; Bao Yang; Kristina Seftigen; Kristina Seftigen; Paul J. Krusic; Paul J. Krusic; Josef Ludescher; Jan Esper; Jianglin Wang; Jianglin Wang; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Ulf Büntgen; Guobao Xu; Guobao Xu; Matthew W. Salzer; Étienne Boucher; Étienne Boucher; Philipp Hochreuther; Samuli Helama; Ernesto Tejedor; Frederick Reinig; Clive Oppenheimer; Clive Oppenheimer; Fabio Gennaretti; Achim Bräuning; A. Stine; Christophe Corona; Sebastian Guillet; Peter Huybers; Wolfgang Jens-Henrik Meier; A. M. Trevino; Paolo Cherubini; Björn E. Gunnarson; Malcolm K. Hughes; Dominique Arseneault; Kevin J. Anchukaitis; Joel Guiot; Kathy Allen; Kathy Allen; Olga V. Churakova (Sidorova); Jussi Grießinger; Scott St. George; Rob Wilson; Rob Wilson; Snigdhansu Chatterjee; Valerie Trouet;doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
AbstractTree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2021Publisher:The Royal Society Yan, Chuan; Huidong Tian; Wan, Xinru; Jinxing He; Guoyu Ren; Büntgen, Ulf; Stenseth, Nils Chr.; Zhang, Zhibin;Climate change may contribute to the spatio-temporal occurrence of disasters. Long-term studies of either homogeneous or heterogeneous responses of historical disasters to climate change are, however, limited by the quality and quantity of the available proxy data. Here we reconstruct spatio-temporal patterns of five types of disasters in China during the period AD 1368–1911. Our analyses of these time series reveal that warmer temperatures decreased the occurrence of disasters in the monsoon-affected parts of central-east China, but it increased the frequency and intensity of disasters along the boundary of arid and humid conditions in parts of southwest and northeast China, likely driven by the interplay among monsoon, westerlies, polar vortex and variation of temperature. Moreover, we show that drought and flood events had cascading effects on the occurrences of locust outbreaks, famine and human epidemics. Our findings suggest that climate can contribute to the spatio-temporal occurrence of disasters, and therefore may contribute to an improvement of China's regional to national risk management of future climate and environmental change.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13949700.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13949700.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 ItalyPublisher:The Royal Society Paul J. Krusic; Paul J. Krusic; Hannes Jenny; Ulf Büntgen; J. Diego Galván; Alma Piermattei; Kurt Bollmann;In many species, decreasing body size has been associated with increasing temperatures. Although climate-induced phenotypic shifts, and evolutionary impacts, can affect the structure and functioning of marine and terrestrial ecosystems through biological and metabolic rules, evidence for shrinking body size is often challenged by (i) relatively short intervals of observation, (ii) a limited number of individuals, and (iii) confinement to small and isolated populations. To overcome these issues and provide important multi-species, long-term information for conservation managers and scientists, we compiled and analysed 222 961 measurements of eviscerated body weight, 170 729 measurements of hind foot length and 145 980 measurements of lower jaw length, in the four most abundant Alpine ungulate species: ibex ( Capra ibex ), chamois ( Rupicapra rupicapra ), red deer ( Cervus elaphus ) and roe deer ( Capreolus capreolus ). Regardless of age, sex and phylogeny, the body mass and size of these sympatric animals, from the eastern Swiss Alps, remained stable between 1991 and 2013. Neither global warming nor local hunting influenced the fitness of the wild ungulates studied at a detectable level. However, we cannot rule out possible counteracting effects of enhanced nutritional resources associated with longer and warmer growing seasons, as well as the animals' ability to migrate along extensive elevational gradients in the highly diversified alpine landscape of this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.200196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.200196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Czech Republic, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAR, DFGEC| MONOSTAR ,DFGEileen Kuhl; Jan Esper; Lea Schneider; Valerie Trouet; Marcel Kunz; Lara Klippel; Ulf Büntgen; Claudia Hartl;AbstractEurope experienced severe heat waves during the last decade, which impacted ecological and societal systems and are likely to increase under projected global warming. A better understanding of pre-industrial warm-season changes is needed to contextualize these recent trends and extremes. Here, we introduce a network of 352 living and relict larch trees (Larix decidua Mill.) from the Matter and Simplon valleys in the Swiss Alps to develop a maximum latewood density (MXD) chronology calibrating at r = 0.8 (p > 0.05, 1901–2017 CE) against May–August temperatures over Western Europe. Machine learning is applied to identify historical wood samples aligning with growth characteristics of sites from elevations above 1900 m asl to extend the modern part of the chronology back to 881 CE. The new Alpine record reveals warmer conditions in the tenth century, followed by an extended cold period during the late Medieval times, a less-pronounced Little Ice Age culminating in the 1810s, and prolonged anthropogenic warming until present. The Samalas eruption likely triggered the coldest reconstructed summer in Western Europe in 1258 CE (-2.32 °C), which is in line with a recently published MXD-based reconstruction from the Spanish Pyrenees. Whereas the new Alpine reconstruction is potentially constrained in the lowest frequency, centennial timescale domain, it overcomes variance biases in existing state-of-the-art reconstructions and sets a new standard in site-control of historical samples and calibration/ verification statistics.
Climate Dynamics arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-024-07195-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Climate Dynamics arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2024Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-024-07195-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:The Royal Society Yan, Chuan; Huidong Tian; Wan, Xinru; Jinxing He; Guoyu Ren; Büntgen, Ulf; Stenseth, Nils Chr.; Zhang, Zhibin;Climate change may contribute to the spatio-temporal occurrence of disasters. Long-term studies of either homogeneous or heterogeneous responses of historical disasters to climate change are, however, limited by the quality and quantity of the available proxy data. Here we reconstruct spatio-temporal patterns of five types of disasters in China during the period AD 1368–1911. Our analyses of these time series reveal that warmer temperatures decreased the occurrence of disasters in the monsoon-affected parts of central-east China, but it increased the frequency and intensity of disasters along the boundary of arid and humid conditions in parts of southwest and northeast China, likely driven by the interplay among monsoon, westerlies, polar vortex and variation of temperature. Moreover, we show that drought and flood events had cascading effects on the occurrences of locust outbreaks, famine and human epidemics. Our findings suggest that climate can contribute to the spatio-temporal occurrence of disasters, and therefore may contribute to an improvement of China's regional to national risk management of future climate and environmental change.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13949703.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13949703.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 06 Jun 2020 Italy, France, United KingdomPublisher:Springer Science and Business Media LLC Ulf Büntgen; Ulf Büntgen; Paul J. Krusic; Beat Wermelinger; Jan Esper; Frederick Reinig; Andrew M. Liebhold; Andrew M. Liebhold; Paolo Cherubini; Alain Roques; Alma Piermattei; Simon Egli; Daniel Nievergelt;AbstractThe sudden interruption of recurring larch budmoth (LBM; Zeiraphera diniana or griseana Gn.) outbreaks across the European Alps after 1982 was surprising, because populations had regularly oscillated every 8–9 years for the past 1200 years or more. Although ecophysiological evidence was limited and underlying processes remained uncertain, climate change has been indicated as a possible driver of this disruption. An unexpected, recent return of LBM population peaks in 2017 and 2018 provides insight into this insect’s climate sensitivity. Here, we combine meteorological and dendrochronological data to explore the influence of temperature variation and atmospheric circulation on cyclic LBM outbreaks since the early 1950s. Anomalous cold European winters, associated with a persistent negative phase of the North Atlantic Oscillation, coincide with four consecutive epidemics between 1953 and 1982, and any of three warming-induced mechanisms could explain the system’s failure thereafter: (1) high egg mortality, (2) asynchrony between egg hatch and foliage growth, and (3) upward shifts of outbreak epicentres. In demonstrating that LBM populations continued to oscillate every 8–9 years at sub-outbreak levels, this study emphasizes the relevance of winter temperatures on trophic interactions between insects and their host trees, as well as the importance of separating natural from anthropogenic climate forcing on population behaviour.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02627834/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02627834/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-019-04585-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02627834/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2020License: CC BYFull-Text: https://hal.inrae.fr/hal-02627834/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-019-04585-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Austria, NorwayPublisher:The Royal Society Einar Heegaard; Beatrice Senn-Irlet; Ulf Büntgen; Simon Egli; Irmgard Krisai-Greilhuber; Klaus Høiland; Jeffrey M. Diez; Carrie Andrew; Carrie Andrew; Håvard Kauserud;Many plant and animal species are changing their latitudinal and/or altitudinal distributions in response to climate change, but whether fungi show similar changes is largely unknown. Here, we use historical fungal fruit body records from the European Alps to assess altitudinal changes in fungal fruiting between 1960 and 2010. We observe that many fungal species are fruiting at significantly higher elevations in 2010 compared to 1960, and especially so among soil-dwelling fungi. Wood-decay fungi, being dependent on the presence of one or a few host trees, show a slower response. Species growing at higher elevations changed their altitudinal fruiting patterns significantly more than lowland species. Environmental changes in high altitudes may lead to proportionally stronger responses, since high-altitude species live closer to their physiological limit. These aboveground changes in fruiting patterns probably mirror corresponding shifts in belowground fungal communities, suggesting parallel shifts in important ecosystem functions.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu