- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:Elsevier BV Funded by:EC | ADEL, EC | RELHYEC| ADEL ,EC| RELHYAuthors: Julie Mougin; A. Chatroux; K. Couturier;M. Petitjean;
+3 AuthorsM. Petitjean
M. Petitjean in OpenAIREJulie Mougin; A. Chatroux; K. Couturier;M. Petitjean;
M. Petitjean
M. Petitjean in OpenAIREM. Reytier;
G. Gousseau;M. Reytier
M. Reytier in OpenAIREF. Lefebvre-Joud;
F. Lefebvre-Joud
F. Lefebvre-Joud in OpenAIREAbstractHigh Temperature Steam Electrolysis (HTSE) is one of the most promising ways for hydrogen production. If coupled to a CO2-free electricity and low cost heat sources, this process is liable to a high efficiency.The present study describes recent promising results obtained in terms of performance and durability in stack environment, thanks to the use of protective coatings on one hand, and of advanced cells on the other hand.As for Solid Oxide Fuel Cells, it has been demonstrated that the integration of protective coatings was mandatory to decrease the degradation rate in HTSE stacks, and that with optimized coatings, (CoMn)3O4 in the present case, the same durability as the one of the single cell tested in a ceramic housing could be reached. The type of cell was also shown to play a major role on the degradation rate. With advanced cells, degradations below 2%/kh could be reached. The higher is the current density, the higher is the degradation rate, with a mostly reversible effect. These degradation rates are close to the objectives, even if a bit higher than in SOFC mode.Finally a low-weight stack has been designed, targeting high performance and durability while reducing the cost by the use of thin interconnects. An electrochemical performance similar to the previous stack design has been obtained for a 3-cell stack (-1 A/cm2 at 1.3V at 800°C), with degradation rates below 3%/1000h in the testing conditions.The thermal cyclability of stacks has been demonstrated, from 800°C to 20°C, as well as electrical load cycling. The results showed that the HTSE stacks considered in the present study can cycle very rapidly, and that the cycles considered do not induce any degradation. Therefore it can be concluded that these results makes HTSE technology getting closer to the objectives of performance, durability, thermal and electrical cyclability and cost, and that HTSE is a candidate to produce hydrogen as a mean to store renewable intermittent energies.
Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.09.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.09.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 FrancePublisher:Elsevier BV Abstract The integrity of PWR pressure vessels is assured by keeping the crack tip stress intensity factor below the toughness of the material under monotonic isothermal loading. To study the effects of sudden cooling associated with a thermal gradient, a specially modified compact specimen has been developed. This has been used to carry out tests in the transition zone with different loading-temperature sequences liable to call the conventional criteria into question. The test is described in detail in Part I of this article [Chapuliot S, et al. Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone. Part I: Description of the tests. Engng Fract Mech, 72, 2005, 661–73]. The second part describes numerical investigations to estimate the local mechanical fields at the crack tip and the overall parameters of the fracture mechanics. Finite element thermomechanical calculations are used to interpret the results of these new thermal shock tests using the master curve concept [ASTM E 1921–1997. Standard test method for determination of reference temperature To for ferritic steels in the transition range, 1997] and the Beremin statistical model [Beremin FM. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Trans A, 14A, November 1983, 2287–777].
Hyper Article en Lig... arrow_drop_down Engineering Fracture MechanicsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engfracmech.2004.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Engineering Fracture MechanicsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engfracmech.2004.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Wiley Mougin, Julie; Mansuy, Aurore; Chatroux, A.; Gousseau, G.;Petitjean, Marie;
Petitjean, Marie
Petitjean, Marie in OpenAIREReytier, Magali;
Reytier, Magali
Reytier, Magali in OpenAIREMauvy, Fabrice;
Mauvy, Fabrice
Mauvy, Fabrice in OpenAIREAbstractHigh temperature steam electrolysis (HTSE) is one of the most promising ways for hydrogen mass production. If coupled to a CO2‐free electricity and a low cost heat source, this process is liable to a high efficiency. High levels of performance and durability, in association with cost‐effective stack and system components are the key points. To reach such goals, a low‐weight stack has been designed, keeping the advantages of the high performing and robust stack previously validated in terms of performance, durability, and cyclability [1], but aiming at reducing the cost by the use of thin interconnects. This low‐weight stack has demonstrated at the scale of a 3‐cell stack a good performance of –1.0 A cm–2 at 1.3 V at 800 °C. Before performing the durability test, preliminary studies at the cell level have been carried out to highlight the effect of two major operating parameters that are the current density and the steam conversion (SC) ratio, those studies being carried out at one temperature, 800 °C. Based on these results, optimized operating parameters have been defined to perform the durability test on the stack, that is –0.5 A cm–2 and a SC ratio of 25%. Degradation rates around 3–4% 1,000 h–1 have been measured. The thermal cyclability of this stack has also been demonstrated with one thermal cycle. Therefore it can be concluded that these results make HTSE technology getting closer to the objectives of performance, durability, thermal cyclability, and cost.
Hyper Article en Lig... arrow_drop_down Fuel CellsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201200199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Fuel CellsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201200199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Elsevier BV Funded by:EC | ECo, EC | SOPHIAEC| ECo ,EC| SOPHIAAuthors:Bernadet, Lucile;
Bernadet, Lucile
Bernadet, Lucile in OpenAIRELaurencin, Jérôme;
Roux, Guilhem;Laurencin, Jérôme
Laurencin, Jérôme in OpenAIREMontinaro, Dario;
+2 AuthorsMontinaro, Dario
Montinaro, Dario in OpenAIREBernadet, Lucile;
Bernadet, Lucile
Bernadet, Lucile in OpenAIRELaurencin, Jérôme;
Roux, Guilhem;Laurencin, Jérôme
Laurencin, Jérôme in OpenAIREMontinaro, Dario;
Montinaro, Dario
Montinaro, Dario in OpenAIREMauvy, Fabrice;
Mauvy, Fabrice
Mauvy, Fabrice in OpenAIREReytier, Magali;
Reytier, Magali
Reytier, Magali in OpenAIREAbstract Experiments have been performed in pressurized co-electrolysis mode at 800 °C on a typical Ni-YSZ//YSZ//CGO-LSCF cell. The polarization curves and the composition of the produced syngas have been measured at 1 bar and 10 bar. It has been found that the cell performances are improved under pressure at 1.3 V. The gas analyses have revealed that the methane formation is only activated under polarization and pressure. These experimental results have been used to validate a model which encompasses a chemical and electrochemical description of the co-electrolyser combined with a mass transport module. It has been found that the model is able to predict accurately the polarization curves as well as the syngas compositions at the cell outlet. Once validated, the model has been used to analyze the operating mechanisms in pressurized co-electrolysis. The impact of pressure on the mass transfer, the electrochemical and chemical reactions has been discussed. The close interaction between the electrochemical and chemical reactions for the internal production of CH 4 has been specifically highlighted. Finally, operating maps have been computed at 10 bar from 700 °C to 800 °C. These simulations have shown that formation of CH 4 in the co-electrolyser remains limited at 700 °C.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2017.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2017.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2005Publisher:ASMEDC Thermal shocks and temperature gradients associated with large thickness constitute difficult loadings for structures integrity analysis. Moreover, at low temperature or because of irradiation effects, the pressure vessel steel 16MND5 undergoes a transition in fracture mode which may lead to cleavage initiation. The prevention of this fracture mode is generally ensured by first staying outside the brittle domain and secondly, by imposing a stress intensity factor below the fracture toughness which is determined from monotonic and isotherm standard tests. But, with various temperature-loading histories, this criterion is not faultless. Therefore, in order to study in detail rupture under thermal shocks, with several loading types (mechanical and/or thermal loadings), a specific-adapted cracked ring has been developed. It consists of a 50mm thick ring which has a crack on the external diameter and several holes through the specimen to locally heat the ring by injecting hot water which can lead to crack initiation. This particular test allows the study of crack initiation with only thermal loading or both thermal loading and external mechanical loading. This article describes in details several tests including one with cleavage rupture. Moreover, numerical calculations are presented to estimate the mechanical fields at the crack tip and the global fracture mechanics parameters as a function of the temperature. Several rupture criteria are then applied to predict the initiation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/pvp2005-71250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/pvp2005-71250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu