- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, Netherlands, Germany, United Kingdom, Austria, Czech Republic, Austria, Germany, France, Netherlands, Spain, Czech RepublicPublisher:Wiley Funded by:FWF | The Global Naturalized Al..., DFG | German Centre for Integra...FWF| The Global Naturalized Alien Flora (GloNAF) database ,DFG| German Centre for Integrative Biodiversity Research - iDivJesper Erenskjold Moeslund; Bernd Lenzner; Qiang Yang; Franz Essl; Rense Haveman; Caroline Brunel; Petr Pyšek; Patrick Weigelt; Mark van Kleunen; Mark van Kleunen; Jens-Christian Svenning; Jan Pergl; Carsten Meyer; Trevor S. Fristoe; Jonathan Lenoir; Holger Kreft; Wayne Dawson; Thomas Wohlgemuth; Milan Chytrý; Robin Pouteau; Idoia Biurrun; Carsten Hobohm; Florian Jansen; Wilfried Thuiller;doi: 10.1111/ddi.13378
handle: 11353/10.1597353
AbstractAimsThe rapid increase in the number of species that have naturalized beyond their native range is among the most apparent features of the Anthropocene. How alien species will respond to other processes of future global changes is an emerging concern and remains poorly misunderstood. We therefore ask whether naturalized species will respond to climate and land use change differently than those species not yet naturalized anywhere in the world.LocationGlobal.MethodsWe investigated future changes in the potential alien range of vascular plant species endemic to Europe that are either naturalized (n = 272) or not yet naturalized (1,213) outside of Europe. Potential ranges were estimated based on projections of species distribution models using 20 future climate‐change scenarios. We mapped current and future global centres of naturalization risk. We also analysed expected changes in latitudinal, elevational and areal extent of species’ potential alien ranges.ResultsWe showed a large potential for more worldwide naturalizations of European plants currently and in the future. The centres of naturalization risk for naturalized and non‐naturalized plants largely overlapped, and their location did not change much under projected future climates. Nevertheless, naturalized plants had their potential range shifting poleward over larger distances, whereas the non‐naturalized ones had their potential elevational ranges shifting further upslope under the most severe climate change scenarios. As a result, climate and land use changes are predicted to shrink the potential alien range of European plants, but less so for already naturalized than for non‐naturalized species.Main conclusionsWhile currently non‐naturalized plants originate frequently from mountain ranges or boreal and Mediterranean biomes in Europe, the naturalized ones usually occur at low elevations, close to human centres of activities. As the latter are expected to increase worldwide, this could explain why the potential alien range of already naturalized plants will shrink less.
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2021 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/34794/1/34794.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2021License: CC BYFull-Text: http://dro.dur.ac.uk/34794/Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONRepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2021 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/34794/1/34794.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2021License: CC BYFull-Text: http://dro.dur.ac.uk/34794/Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONRepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Austria, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:FWF | Advancing the understandi...FWF| Advancing the understanding of global plant invasionsZhang, Zhijie; Yang, Qiang; Fristoe, Trevor S.; Dawson, Wayne; Essl, Franz; Kreft, Holger; Lenzner, Bernd; Pergl, Jan; Pyšek, Petr; Weigelt, Patrick; Winter, Marten; Fuentes, Nicol; Kartesz, John T.; Nishino, Misako; van Kleunen, Mark;Plant introductions outside their native ranges by humans have led to substantial ecological consequences. While we have gained considerable knowledge about intercontinental introductions, the distribution and determinants of intracontinental aliens remain poorly understood. Here, we studied naturalized (i.e., self-sustaining) intracontinental aliens using native and alien floras of 243 mainland regions in North America, South America, Europe, and Australia. We revealed that 4510 plant species had intracontinental origins, accounting for 3.9% of all plant species and 56.7% of all naturalized species in these continents. In North America and Europe, the numbers of intracontinental aliens peaked at mid-latitudes, while the proportion peaked at high latitudes in Europe. Notably, we found predominant poleward naturalization, primarily due to larger native species pools in low-latitudes. Geographic and climatic distances constrained the naturalization of intracontinental aliens in Australia, Europe, and North America, but not in South America. These findings suggest that poleward naturalizations will accelerate, as high latitudes become suitable for more plant species due to climate change.
Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2023License: CC BY NCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adi1897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2023License: CC BY NCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adi1897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV James H. Brown; Norman Mercado-Silva; Sean T. Hammond; Jeffrey C. Nekola; Astrid Kodric-Brown; Joseph R. Burger; Trevor S. Fristoe; William R. Burnside; Ana D. Davidson; Jordan G. Okie; Michael Chang; Marcus J. Hamilton;The current economic paradigm, which is based on increasing human population, economic development, and standard of living, is no longer compatible with the biophysical limits of the finite Earth. Failure to recover from the economic crash of 2008 is not due just to inadequate fiscal and monetary policies. The continuing global crisis is also due to scarcity of critical resources. Our macroecological studies highlight the role in the economy of energy and natural resources: oil, gas, water, arable land, metals, rare earths, fertilizers, fisheries, and wood. As the modern industrial technological-informational economy expanded in recent decades, it grew by consuming the Earth's natural resources at unsustainable rates. Correlations between per capita GDP and per capita consumption of energy and other resources across nations and over time demonstrate how economic growth and development depend on "nature's capital". Decades-long trends of decreasing per capita consumption of multiple important commodities indicate that overexploitation has created an unsustainable bubble of population and economy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2013.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2013.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Proceedings of the National Academy of Sciences Meghan A. Balk; James H. Brown; Imran Khaliq; Joseph R. Burger; Joseph R. Burger; Trevor S. Fristoe; Trevor S. Fristoe; Christian Hof;Significance How different kinds of organisms adapt to environmental temperature is central to understanding how they respond to past, present, and future climate change. We applied the Scholander–Irving model of thermoregulation to data on hundreds of species of birds and mammals to assess the contributions of three avenues of adaptation to environmental temperature: body size, basal metabolic rate ( BMR ), and thermal conductance. Adaptation via body size is limited; the entire ranges of body sizes of birds and mammals occur in nearly all climatic regimes. Using physiological and environmental data for 211 bird and 178 mammal species, we demonstrate that birds and mammals have adapted to geographic variation in environmental temperature regimes by concerted changes in both BMR and thermal conductance.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1521662112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1521662112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, United States, United StatesPublisher:The Royal Society Funded by:NSF | Integrating species trait...NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assemblyTrevor S. Fristoe; Christopher P. Catano; Jonathan Myers; Joseph A. LaManna; Joseph A. LaManna;Biodiversity often stabilizes aggregate ecosystem properties (e.g. biomass) at small spatial scales. However, the importance of species diversity within communities and variation in species composition among communities (β-diversity) for stability at larger scales remains unclear. Using a continental-scale analysis of 1657 North American breeding-bird communities spanning 20-years and 35 ecoregions, we show local species diversity and β-diversity influence two components of regional stability: local stability (stability of bird biomass within sites) and spatial asynchrony (asynchronous fluctuations in biomass among sites). We found spatial asynchrony explained three times more variation in regional stability of bird biomass than did local stability. This result contrasts with studies at smaller spatial scales—typically plant metacommunities under 1 ha—that find local stability to be more important than spatial asynchrony. Moreover, spatial asynchrony of bird biomass increased with bird β-diversity and climate heterogeneity (temperature and precipitation), while local stability increased with species diversity. Our study reveals new insights into the scale-dependent processes regulating ecosystem stability, providing evidence that both local biodiversity loss and homogenization can destabilize ecosystem processes at biogeographic scales.
Proceedings of the R... arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2020Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2020Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Austria, GermanyPublisher:Authorea, Inc. Ali Omer; Franz Essl; Stefan Dullinger; Bernd Lenzner; Adrián García‐Rodríguez; Dietmar Moser; Trevor S. Fristoe; Wayne Dawson; Patrick Weigelt; Holger Kreft; Jan Pergl; Petr Pyšek; Mark van Kleunen; Johannes Wessely;Alien species can have massive impacts on native biodiversity and ecosystem functioning. Assessing which species from currently cultivated alien floras may escape into the wild and naturalize is hence essential for ecosystem management and biodiversity conservation. Climate change has promoted the naturalization of many alien plants in temperate regions, but whether outcomes are similar in (sub)tropical areas is insufficiently known. In this study, we used species distribution models to evaluate the current naturalization risk of 1,527 cultivated alien plants in 10 countries of Southern Africa and how their invasion risk might change due to climate change. We assessed changes in climatic suitability across the different biomes of Southern Africa. Moreover, we assessed whether climatic suitability for cultivated alien plants varied with their naturalization status and native origin. The results of our study indicate that a significant proportion (53.9%) of the species are projected to lack suitable climatic conditions in Southern Africa, both currently and in the future. Based on the current climate conditions, 10.0% of Southern Africa is identified as an invasion hotspot (here defined as the top 10% of grid cells that provide suitable climatic conditions to the highest numbers of species). This percentage is expected to decrease slightly to 7.1% under moderate future climate change and shrink considerably to 2.0% under the worst-case scenario. This decline in climatic suitability is observed across most native origins, particularly under the worst-case climate change scenario. Our findings indicate that climate change is likely to have an opposing effect on the naturalization of currently cultivated average plants in (sub)tropical Southern Africa compared to colder regions. Specifically, the risk of these plants’ naturalizing is expected to decrease due to the region’s increasingly hot and dry climate, which will be challenging for the persistence of both native and alien plant species.
Ecography arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2024License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.168881647.70708400/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecography arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2024License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.168881647.70708400/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, Netherlands, Germany, United Kingdom, Austria, Czech Republic, Austria, Germany, France, Netherlands, Spain, Czech RepublicPublisher:Wiley Funded by:FWF | The Global Naturalized Al..., DFG | German Centre for Integra...FWF| The Global Naturalized Alien Flora (GloNAF) database ,DFG| German Centre for Integrative Biodiversity Research - iDivJesper Erenskjold Moeslund; Bernd Lenzner; Qiang Yang; Franz Essl; Rense Haveman; Caroline Brunel; Petr Pyšek; Patrick Weigelt; Mark van Kleunen; Mark van Kleunen; Jens-Christian Svenning; Jan Pergl; Carsten Meyer; Trevor S. Fristoe; Jonathan Lenoir; Holger Kreft; Wayne Dawson; Thomas Wohlgemuth; Milan Chytrý; Robin Pouteau; Idoia Biurrun; Carsten Hobohm; Florian Jansen; Wilfried Thuiller;doi: 10.1111/ddi.13378
handle: 11353/10.1597353
AbstractAimsThe rapid increase in the number of species that have naturalized beyond their native range is among the most apparent features of the Anthropocene. How alien species will respond to other processes of future global changes is an emerging concern and remains poorly misunderstood. We therefore ask whether naturalized species will respond to climate and land use change differently than those species not yet naturalized anywhere in the world.LocationGlobal.MethodsWe investigated future changes in the potential alien range of vascular plant species endemic to Europe that are either naturalized (n = 272) or not yet naturalized (1,213) outside of Europe. Potential ranges were estimated based on projections of species distribution models using 20 future climate‐change scenarios. We mapped current and future global centres of naturalization risk. We also analysed expected changes in latitudinal, elevational and areal extent of species’ potential alien ranges.ResultsWe showed a large potential for more worldwide naturalizations of European plants currently and in the future. The centres of naturalization risk for naturalized and non‐naturalized plants largely overlapped, and their location did not change much under projected future climates. Nevertheless, naturalized plants had their potential range shifting poleward over larger distances, whereas the non‐naturalized ones had their potential elevational ranges shifting further upslope under the most severe climate change scenarios. As a result, climate and land use changes are predicted to shrink the potential alien range of European plants, but less so for already naturalized than for non‐naturalized species.Main conclusionsWhile currently non‐naturalized plants originate frequently from mountain ranges or boreal and Mediterranean biomes in Europe, the naturalized ones usually occur at low elevations, close to human centres of activities. As the latter are expected to increase worldwide, this could explain why the potential alien range of already naturalized plants will shrink less.
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2021 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/34794/1/34794.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2021License: CC BYFull-Text: http://dro.dur.ac.uk/34794/Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONRepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2021 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/34794/1/34794.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2021License: CC BYFull-Text: http://dro.dur.ac.uk/34794/Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONRepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Austria, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:FWF | Advancing the understandi...FWF| Advancing the understanding of global plant invasionsZhang, Zhijie; Yang, Qiang; Fristoe, Trevor S.; Dawson, Wayne; Essl, Franz; Kreft, Holger; Lenzner, Bernd; Pergl, Jan; Pyšek, Petr; Weigelt, Patrick; Winter, Marten; Fuentes, Nicol; Kartesz, John T.; Nishino, Misako; van Kleunen, Mark;Plant introductions outside their native ranges by humans have led to substantial ecological consequences. While we have gained considerable knowledge about intercontinental introductions, the distribution and determinants of intracontinental aliens remain poorly understood. Here, we studied naturalized (i.e., self-sustaining) intracontinental aliens using native and alien floras of 243 mainland regions in North America, South America, Europe, and Australia. We revealed that 4510 plant species had intracontinental origins, accounting for 3.9% of all plant species and 56.7% of all naturalized species in these continents. In North America and Europe, the numbers of intracontinental aliens peaked at mid-latitudes, while the proportion peaked at high latitudes in Europe. Notably, we found predominant poleward naturalization, primarily due to larger native species pools in low-latitudes. Geographic and climatic distances constrained the naturalization of intracontinental aliens in Australia, Europe, and North America, but not in South America. These findings suggest that poleward naturalizations will accelerate, as high latitudes become suitable for more plant species due to climate change.
Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2023License: CC BY NCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adi1897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2023License: CC BY NCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adi1897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV James H. Brown; Norman Mercado-Silva; Sean T. Hammond; Jeffrey C. Nekola; Astrid Kodric-Brown; Joseph R. Burger; Trevor S. Fristoe; William R. Burnside; Ana D. Davidson; Jordan G. Okie; Michael Chang; Marcus J. Hamilton;The current economic paradigm, which is based on increasing human population, economic development, and standard of living, is no longer compatible with the biophysical limits of the finite Earth. Failure to recover from the economic crash of 2008 is not due just to inadequate fiscal and monetary policies. The continuing global crisis is also due to scarcity of critical resources. Our macroecological studies highlight the role in the economy of energy and natural resources: oil, gas, water, arable land, metals, rare earths, fertilizers, fisheries, and wood. As the modern industrial technological-informational economy expanded in recent decades, it grew by consuming the Earth's natural resources at unsustainable rates. Correlations between per capita GDP and per capita consumption of energy and other resources across nations and over time demonstrate how economic growth and development depend on "nature's capital". Decades-long trends of decreasing per capita consumption of multiple important commodities indicate that overexploitation has created an unsustainable bubble of population and economy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2013.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2013.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Proceedings of the National Academy of Sciences Meghan A. Balk; James H. Brown; Imran Khaliq; Joseph R. Burger; Joseph R. Burger; Trevor S. Fristoe; Trevor S. Fristoe; Christian Hof;Significance How different kinds of organisms adapt to environmental temperature is central to understanding how they respond to past, present, and future climate change. We applied the Scholander–Irving model of thermoregulation to data on hundreds of species of birds and mammals to assess the contributions of three avenues of adaptation to environmental temperature: body size, basal metabolic rate ( BMR ), and thermal conductance. Adaptation via body size is limited; the entire ranges of body sizes of birds and mammals occur in nearly all climatic regimes. Using physiological and environmental data for 211 bird and 178 mammal species, we demonstrate that birds and mammals have adapted to geographic variation in environmental temperature regimes by concerted changes in both BMR and thermal conductance.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1521662112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1521662112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, United States, United StatesPublisher:The Royal Society Funded by:NSF | Integrating species trait...NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assemblyTrevor S. Fristoe; Christopher P. Catano; Jonathan Myers; Joseph A. LaManna; Joseph A. LaManna;Biodiversity often stabilizes aggregate ecosystem properties (e.g. biomass) at small spatial scales. However, the importance of species diversity within communities and variation in species composition among communities (β-diversity) for stability at larger scales remains unclear. Using a continental-scale analysis of 1657 North American breeding-bird communities spanning 20-years and 35 ecoregions, we show local species diversity and β-diversity influence two components of regional stability: local stability (stability of bird biomass within sites) and spatial asynchrony (asynchronous fluctuations in biomass among sites). We found spatial asynchrony explained three times more variation in regional stability of bird biomass than did local stability. This result contrasts with studies at smaller spatial scales—typically plant metacommunities under 1 ha—that find local stability to be more important than spatial asynchrony. Moreover, spatial asynchrony of bird biomass increased with bird β-diversity and climate heterogeneity (temperature and precipitation), while local stability increased with species diversity. Our study reveals new insights into the scale-dependent processes regulating ecosystem stability, providing evidence that both local biodiversity loss and homogenization can destabilize ecosystem processes at biogeographic scales.
Proceedings of the R... arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2020Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2020Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Austria, GermanyPublisher:Authorea, Inc. Ali Omer; Franz Essl; Stefan Dullinger; Bernd Lenzner; Adrián García‐Rodríguez; Dietmar Moser; Trevor S. Fristoe; Wayne Dawson; Patrick Weigelt; Holger Kreft; Jan Pergl; Petr Pyšek; Mark van Kleunen; Johannes Wessely;Alien species can have massive impacts on native biodiversity and ecosystem functioning. Assessing which species from currently cultivated alien floras may escape into the wild and naturalize is hence essential for ecosystem management and biodiversity conservation. Climate change has promoted the naturalization of many alien plants in temperate regions, but whether outcomes are similar in (sub)tropical areas is insufficiently known. In this study, we used species distribution models to evaluate the current naturalization risk of 1,527 cultivated alien plants in 10 countries of Southern Africa and how their invasion risk might change due to climate change. We assessed changes in climatic suitability across the different biomes of Southern Africa. Moreover, we assessed whether climatic suitability for cultivated alien plants varied with their naturalization status and native origin. The results of our study indicate that a significant proportion (53.9%) of the species are projected to lack suitable climatic conditions in Southern Africa, both currently and in the future. Based on the current climate conditions, 10.0% of Southern Africa is identified as an invasion hotspot (here defined as the top 10% of grid cells that provide suitable climatic conditions to the highest numbers of species). This percentage is expected to decrease slightly to 7.1% under moderate future climate change and shrink considerably to 2.0% under the worst-case scenario. This decline in climatic suitability is observed across most native origins, particularly under the worst-case climate change scenario. Our findings indicate that climate change is likely to have an opposing effect on the naturalization of currently cultivated average plants in (sub)tropical Southern Africa compared to colder regions. Specifically, the risk of these plants’ naturalizing is expected to decrease due to the region’s increasingly hot and dry climate, which will be challenging for the persistence of both native and alien plant species.
Ecography arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2024License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.168881647.70708400/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecography arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2024License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.168881647.70708400/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu