- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Peng Liu;
Peng Liu
Peng Liu in OpenAIREChaoyu Wang;
Chaoyu Wang
Chaoyu Wang in OpenAIREJia Hu;
Tingting Fu;
+3 AuthorsTingting Fu
Tingting Fu in OpenAIREPeng Liu;
Peng Liu
Peng Liu in OpenAIREChaoyu Wang;
Chaoyu Wang
Chaoyu Wang in OpenAIREJia Hu;
Tingting Fu;
Tingting Fu
Tingting Fu in OpenAIRENan Cheng;
Nan Cheng
Nan Cheng in OpenAIRENing Zhang;
Ning Zhang
Ning Zhang in OpenAIREXuemin Shen;
Xuemin Shen
Xuemin Shen in OpenAIREhandle: 10871/122521
Thanks to the advantages of zero carbon dioxide emissions and low operation cost, the number of on-road electric vehicles (EVs) is expected to keep increasing. They usually get charged through charging stations powered by either the grid or renewable plants. Due to the potential difference in electricity price between the grid and the renewable plants, an EV may purchase electricity at charging stations powered by renewable plants, and then discharge the surplus energy in the battery to the grid, to gain profits and enhance the overall renewable energy utilization. In this work, we aim to optimize the route selection and charging/discharging scheduling to improve the overall economic profits of EVs, taking into account the constraints, including the time-varying energy supply caused by the intermittent generation of renewable energy, the limited number of charging piles in a charging station, and the traveling delay tolerance of EVs. Firstly, a time-expanded vehicle-to-grid graph is designed to model the objective and related constraints. Then, we apply an AI-based A* algorithm to find K-shortest paths for each EV. Finally, a joint routing selection and charging/discharging algorithm, namely, K-Shortest-Paths-Joint-Routing-Scheduling (KSP-JRS), is proposed to minimize the total cost of EVs by maximizing their revenue from energy discharging under time constraints. The proposed approach is evaluated using the real traffic map around Santa Clara, California. The simulation, with different numbers of testing EVs, shows the feasibility and superiority of the proposed algorithm.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3018114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3018114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Xuemin Shen;
Rongxing Lu; Xiaodong Lin;Xuemin Shen
Xuemin Shen in OpenAIREXiaohui Liang;
+1 AuthorsXiaohui Liang
Xiaohui Liang in OpenAIREXuemin Shen;
Rongxing Lu; Xiaodong Lin;Xuemin Shen
Xuemin Shen in OpenAIREXiaohui Liang;
Xu Li;Xiaohui Liang
Xiaohui Liang in OpenAIRESmart sensing and wireless communication technologies enable the electric power grid system to deliver electricity more efficiently through the dynamic analysis of the electricity demand and supply. The current solution is to extend the traditional static electricity pricing strategy to a time-based one where peak-time prices are defined to influence electricity usage behavior of customers. However, the time-based pricing strategy is not truly dynamic and the electricity resource cannot be optimally utilized in real time. In this paper, we propose a usage-based dynamic pricing (UDP) scheme for smart grid in a community environment, which enables the electricity price to correspond to the electricity usage in real time. In the UDP scheme, to simplify price management and reduce communication overhead, we introduce distributed community gateways as proxies of the utility company to timely respond to the price enquiries from the community customers. We consider both community-wide electricity usage and individual electricity usage as factors into price management: a customer gets higher electricity unit price if its own electricity usage becomes larger under certain conditions of the community-wide collective electricity usage. Additionally, we protect the privacy of the customers by restricting the disclosure of the individual electricity usage to the community gateways. Lastly, we provide privacy and performance analysis to demonstrate that the UDP scheme supports real-time dynamic pricing in an efficient and privacy-preserving manner.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2012.2228240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 155 citations 155 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2012.2228240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Xuemin Shen;
Hao Liang;Xuemin Shen
Xuemin Shen in OpenAIREWeihua Zhuang;
Weihua Zhuang
Weihua Zhuang in OpenAIREBong Jun Choi;
Bong Jun Choi
Bong Jun Choi in OpenAIREIn this paper, we study the optimal energy delivery problem from viewpoints of both the vehicle owner and aggregator, in load shaving services of a vehicle-to-grid (V2G) system. We formulate the optimization problem based on a general plug-in hybrid electric vehicle (PHEV) model, taking into account the randomness in vehicle mobility, time-of-use electricity pricing, and realistic battery modeling. Stochastic inventory theory is applied to analyze the problem. We mathematically prove that a state-dependent (S,S') policy is optimal for the daily energy cost minimization of each vehicle, and develop an estimation algorithm to calculate the parameters of the optimal policy for practical applications. Furthermore, we investigate the multi-vehicle aggregator design problem by considering the power system constraints. A policy adjustment scheme is proposed to adjust the values of S and S' with respect to the optimal policy adopted by each PHEV, such that the aggregated recharging and discharging power constraints of the power system can be satisfied, while minimizing the incremental cost (or revenue loss) of PHEV owners. Based on characteristics of the state-dependent (S,S') policy and our proposed policy adjustment scheme, the optimal aggregator operation problem is transformed into a convex optimization one which can be readily solved by existing algorithms. The performance of our proposed schemes is evaluated via simulations based on real data collected from Canadian utilities, households, and commuters.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2013.2272894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2013.2272894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Lu, Rongxing;Liang, Xiaohui;
Li, Xu; Lin, Xiaodong; +1 AuthorsLiang, Xiaohui
Liang, Xiaohui in OpenAIRELu, Rongxing;Liang, Xiaohui;
Li, Xu; Lin, Xiaodong;Liang, Xiaohui
Liang, Xiaohui in OpenAIREShen, Xuemin;
Shen, Xuemin
Shen, Xuemin in OpenAIREdoi: 10.1109/tpds.2012.86
The concept of smart grid has emerged as a convergence of traditional power system engineering and information and communication technology. It is vital to the success of next generation of power grid, which is expected to be featuring reliable, efficient, flexible, clean, friendly, and secure characteristics. In this paper, we propose an efficient and privacy-preserving aggregation scheme, named EPPA, for smart grid communications. EPPA uses a superincreasing sequence to structure multidimensional data and encrypt the structured data by the homomorphic Paillier cryptosystem technique. For data communications from user to smart grid operation center, data aggregation is performed directly on ciphertext at local gateways without decryption, and the aggregation result of the original data can be obtained at the operation center. EPPA also adopts the batch verification technique to reduce authentication cost. Through extensive analysis, we demonstrate that EPPA resists various security threats and preserve user privacy, and has significantly less computation and communication overhead than existing competing approaches.
IEEE Transactions on... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverIEEE Transactions on Parallel and Distributed SystemsArticle . 2012 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpds.2012.86&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 633 citations 633 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverIEEE Transactions on Parallel and Distributed SystemsArticle . 2012 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpds.2012.86&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2011Publisher:IEEE As an indispensable infrastructure for the future life, smart grid is being implemented to save energy, reduce costs and increase reliability. In smart grid, control center networks have attracted a great number of attentions, because their security and dependability issues are critical to the entire smart grid. Several studies have been conducted in the field of security, but few work focuses on the dependability analysis of control center networks. In this paper, we adopt a concise mathematic tool, stochastic Petri nets (SPNs), to analyze the dependability of control center networks in smart grid. With the proposed SPNs model, we can measure the dependability from two metrics, i.e., the reliability and availability, through analyzing the transient probability. We also study a specific case to demonstrate the feasibility and efficiency of the proposed model in the dependability analysis of control center networks in smart grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/wcsp.2011.6096966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/wcsp.2011.6096966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSERCNSERCAuthors: Liang Zhou;Xuemin Shen;
Hongwei Li; Rongxing Lu; +1 AuthorsXuemin Shen
Xuemin Shen in OpenAIRESmart grid has emerged as the next generation of power grid, due to its reliability, flexibility, and efficiency. However, smart grid faces some critical security challenges such as the message injection attack and the replay attack. If these challenges cannot be properly addressed, an adversary can maliciously launch the injected or replayed message attacks to degrade the performance of smart grid. To cope with these challenging issues, in this paper, we propose an efficient authentication scheme that employs the Merkle hash tree technique to secure smart gird communication. Specifically, the proposed authentication scheme considers the smart meters with computation-constrained resources and puts the minimum computation overhead on them. Detailed security analysis indicates its security strength, namely, resilience to the replay attack, the message injection attack, the message analysis attack, and the message modification attack. In addition, extensive performance evaluation demonstrates its efficiency in terms of computation complexity and communication overhead.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2013.2271537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu241 citations 241 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2013.2271537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Jiming Chen; Le Chen;Xuemin Sherman Shen;
Zhiguo Shi; +2 AuthorsXuemin Sherman Shen
Xuemin Sherman Shen in OpenAIREJiming Chen; Le Chen;Xuemin Sherman Shen;
Zhiguo Shi; Ruixue Sun; Rongxing Lu;Xuemin Sherman Shen
Xuemin Sherman Shen in OpenAIRESmart grid, as the next generation of power grid characterized by “two-way” communications, has been paid great attention to realizing green, reliable, and efficient electricity delivery for our future lives. In order to support the two-way communications in smart grid, a large number of smart meters (SMs) should be deployed to customers to report their near real-time data to control center for monitoring purpose. However, this kind of real-time report could disclose users’ privacy, bringing down the users’ willingness to participate in smart grid. In order to address the challenge, in this paper, by considering the lifetime of SMs as exponential distribution, we propose a diverse grouping-based aggregation protocol with error detection (DG-APED), which employs differential privacy technique into grouping-based private stream aggregation for secure smart grid communications. DG-APED can not only achieve privacy-preserving aggregation, but also perform error detection efficiently when some SMs are malfunctioning. Detailed security analysis shows that DG-APED can guarantee the security and privacy requirements of smart grid communications. In addition, extensive performance evaluation also verifies the effectiveness and efficiency of the proposed DG-APED.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2443011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2443011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Bong Jun Choi;
Bong Jun Choi
Bong Jun Choi in OpenAIREWeihua Zhuang;
Weihua Zhuang
Weihua Zhuang in OpenAIREXuemin Shen;
Hao Liang;Xuemin Shen
Xuemin Shen in OpenAIREDecentralized inverter control is essential in distributed generation (DG) microgrids for low deployment/operation cost and high reliability. However, decentralized inverter control suffers from a limited system stability mainly because of the lack of communications among different inverters. In this paper, we investigate stability enhancement of the droop based decentralized inverter control in microgrids. Specifically, we propose a power sharing based control strategy which incorporates the information of the total real and reactive power generation of all DG units. The information is acquired by a wireless network (such as a WiFi, ZigBee, and/or cellular communication network) in a decentralized manner. Based on the desired power sharing of each DG unit and the acquired information of total generation, additional control terms are added to the traditional droop controller. We evaluate the performance of the proposed control strategy based on small-signal stability analysis. As timely communication may not be established for a microgrid with low-cost wireless communication devices, two kinds of analytical models are developed with respect to negligible and nonnegligible communication delays, respectively. Extensive numerical results are presented to demonstrate the system stability under the proposed control strategy with respect to different.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2012.2226064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 182 citations 182 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2012.2226064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Jianbing Ni;
Jianbing Ni
Jianbing Ni in OpenAIREKuan Zhang;
Khalid Alharbi; Xiaodong Lin; +2 AuthorsKuan Zhang
Kuan Zhang in OpenAIREJianbing Ni;
Jianbing Ni
Jianbing Ni in OpenAIREKuan Zhang;
Khalid Alharbi; Xiaodong Lin;Kuan Zhang
Kuan Zhang in OpenAIRENing Zhang;
Ning Zhang
Ning Zhang in OpenAIREXuemin Sherman Shen;
Xuemin Sherman Shen
Xuemin Sherman Shen in OpenAIRESmart grid enables two-way communications between operation centers and smart meters to collect power consumption and achieve demand response to improve flexibility, reliability, and efficiency of electricity system. However, power consumption data may contain users’ privacy, e.g., activities, references, and habits. Many smart metering schemes have been proposed utilizing homomorphic encryption for users’ privacy preservation. Unfortunately, some abnormality of smart meter reading, e.g., caused by electricity theft, cannot be discovered since data is encrypted. Meanwhile, operation centers could become curious in reality. To address the above issues, we propose a new privacy-preserving smart metering scheme for smart grid, which supports data aggregation, differential privacy, fault tolerance, and range-based filtering simultaneously. Specifically, we extend lifted ElGamal encryption to aggregate users’ consumption reports at the gateway to reduce communication overhead, while supporting fault tolerance of malfunctioning smart meters effectively. We also leverage zero-knowledge range proof to filter abnormal measurements caused by electricity theft or false data injection attacks without exposing individual measurements. In addition, our scheme can resist differential attacks, by which the curious operation center can violate users’ privacy through comparing two aggregations of the similar data set. Finally, we discuss the properties of the proposed scheme and evaluate its performance in terms of security and efficiency.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2017.2673843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2017.2673843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2014Publisher:IEEE Authors: Hao Liang; Tan N. Le;Xuemin Sherman Shen;
Xuemin Sherman Shen
Xuemin Sherman Shen in OpenAIREBong Jun Choi;
+1 AuthorsBong Jun Choi
Bong Jun Choi in OpenAIREHao Liang; Tan N. Le;Xuemin Sherman Shen;
Xuemin Sherman Shen
Xuemin Sherman Shen in OpenAIREBong Jun Choi;
Hongwei Li;Bong Jun Choi
Bong Jun Choi in OpenAIREThe increasing number of electric vehicles (EVs) will have a significant impact on the demand response (DR) in smart grids (SGs). How to encourage EV users to voluntarily join vehicle-to-grid (V2G) market has been one of the significant challenges to SGs engineers and scientists. On the other hand, dealing with the randomness of renewable distributed energy resources (DERs) output is critical for microgrids to maintain their efficiency and reliability. In this work, a distributed charging and discharging scheduling scheme (DCD) for EVs in microgrids is proposed to provide electric vehicle (EV) users with energy cost reduction while promoting the integration of renewable energy sources (RESs) by reducing the negative impact of highly intermittent characteristics of RESs. The comparison results based on the real measured renewable energy and load data show that the proposed scheme enables EVs to become promisingly important contributors to microgrids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/smartgridcomm.2014.7007730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/smartgridcomm.2014.7007730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu