Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Vehicular Technology
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Joint Route Selection and Charging Discharging Scheduling of EVs in V2G Energy Network

Authors: Peng Liu; Chaoyu Wang; Jia Hu; Tingting Fu; Nan Cheng; Ning Zhang; Xuemin Shen;

Joint Route Selection and Charging Discharging Scheduling of EVs in V2G Energy Network

Abstract

Thanks to the advantages of zero carbon dioxide emissions and low operation cost, the number of on-road electric vehicles (EVs) is expected to keep increasing. They usually get charged through charging stations powered by either the grid or renewable plants. Due to the potential difference in electricity price between the grid and the renewable plants, an EV may purchase electricity at charging stations powered by renewable plants, and then discharge the surplus energy in the battery to the grid, to gain profits and enhance the overall renewable energy utilization. In this work, we aim to optimize the route selection and charging/discharging scheduling to improve the overall economic profits of EVs, taking into account the constraints, including the time-varying energy supply caused by the intermittent generation of renewable energy, the limited number of charging piles in a charging station, and the traveling delay tolerance of EVs. Firstly, a time-expanded vehicle-to-grid graph is designed to model the objective and related constraints. Then, we apply an AI-based A* algorithm to find K-shortest paths for each EV. Finally, a joint routing selection and charging/discharging algorithm, namely, K-Shortest-Paths-Joint-Routing-Scheduling (KSP-JRS), is proposed to minimize the total cost of EVs by maximizing their revenue from energy discharging under time constraints. The proposed approach is evaluated using the real traffic map around Santa Clara, California. The simulation, with different numbers of testing EVs, shows the feasibility and superiority of the proposed algorithm.

Country
United Kingdom
Keywords

vehicular energy network, 330, Vehicle-to-grid, renewable energy, 004, charging/discharging, route selection

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 1%
Top 10%
Top 10%