- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Germany, Germany, FinlandPublisher:Elsevier BV Funded by:EC | EUROfusion, EC | EUROfusionEC| EUROfusion ,EC| EUROfusionMichael Probst; S. Brezinsek; Thomas Schwarz-Selinger; Bastiaan J. Braams; Bastiaan J. Braams; Dmitriy Borodin; Elżbieta Fortuna-Zaleśna; Daisuke Nishijima; Hyun-Kyung Chung; Juri Romazanov; Anna Widdowson; E. Safi; Kalle Heinola; R.P. Doerner; Marek Rubel; Gregory De Temmerman; Christian Hill; Christian Linsmeier; Kai Nordlund;ITER will use beryllium as a plasma-facing material in the main chamber, covering a total surface area of about 620 m2. Given the importance of beryllium erosion and co-deposition for tritium retention in ITER, significant efforts have been made to understand the behaviour of beryllium under fusion-relevant conditions with high particle and heat loads. This paper provides a comprehensive report on the state of knowledge of beryllium behaviour under fusion-relevant conditions: the erosion mechanisms and their consequences, beryllium migration in JET, fuel retention and dust generation. The paper reviews basic laboratory studies, advanced computer simulations and experience from laboratory plasma experiments in linear simulators of plasma–wall interactions and in controlled fusion devices using beryllium plasma-facing components. A critical assessment of analytical methods and simulation codes used in beryllium studies is given. The overall objective is to review the existing set of data with a broad literature survey and to identify gaps and research needs to broaden the database for ITER.
MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03257150Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100994&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03257150Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100994&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Germany, Germany, FinlandPublisher:Elsevier BV Funded by:EC | EUROfusion, EC | EUROfusionEC| EUROfusion ,EC| EUROfusionMichael Probst; S. Brezinsek; Thomas Schwarz-Selinger; Bastiaan J. Braams; Bastiaan J. Braams; Dmitriy Borodin; Elżbieta Fortuna-Zaleśna; Daisuke Nishijima; Hyun-Kyung Chung; Juri Romazanov; Anna Widdowson; E. Safi; Kalle Heinola; R.P. Doerner; Marek Rubel; Gregory De Temmerman; Christian Hill; Christian Linsmeier; Kai Nordlund;ITER will use beryllium as a plasma-facing material in the main chamber, covering a total surface area of about 620 m2. Given the importance of beryllium erosion and co-deposition for tritium retention in ITER, significant efforts have been made to understand the behaviour of beryllium under fusion-relevant conditions with high particle and heat loads. This paper provides a comprehensive report on the state of knowledge of beryllium behaviour under fusion-relevant conditions: the erosion mechanisms and their consequences, beryllium migration in JET, fuel retention and dust generation. The paper reviews basic laboratory studies, advanced computer simulations and experience from laboratory plasma experiments in linear simulators of plasma–wall interactions and in controlled fusion devices using beryllium plasma-facing components. A critical assessment of analytical methods and simulation codes used in beryllium studies is given. The overall objective is to review the existing set of data with a broad literature survey and to identify gaps and research needs to broaden the database for ITER.
MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03257150Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100994&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03257150Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100994&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 FrancePublisher:Elsevier BV Arnas, Cécile; Irby, James; Celli, Sébastien; de Temmerman, Gregory; Addab, Younes; Couëdel, Lenaic; Grisolia, Christian; Lin, Yijun; Martin, Céline; Pardanaud, Cédric; Pierson, Samuel;Post mortem analyses of dust collected in Alcator C-Mod have highlighted a production of large size dust particles. The quantities of such large particles are higher than in any other tokamak. They are divided in two classes as a function of their shape and consequently, their origin. Rounded dust particles such as spheres and splashes constitute the first class. These particles are the result of high heat loads on various leading edges of plasma facing components and possibly, their melting during plasma operation. The heated or already molten material can be destabilized during disruptions and droplets are emitted across the vacuum chamber. After solidification, the resulting rounded particles are either in pure elements or in alloys. Flake-like dust particles, which are mainly due to light material coating delamination, constitute the second class of dust particles.
Hyper Article en Lig... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 FrancePublisher:Elsevier BV Arnas, Cécile; Irby, James; Celli, Sébastien; de Temmerman, Gregory; Addab, Younes; Couëdel, Lenaic; Grisolia, Christian; Lin, Yijun; Martin, Céline; Pardanaud, Cédric; Pierson, Samuel;Post mortem analyses of dust collected in Alcator C-Mod have highlighted a production of large size dust particles. The quantities of such large particles are higher than in any other tokamak. They are divided in two classes as a function of their shape and consequently, their origin. Rounded dust particles such as spheres and splashes constitute the first class. These particles are the result of high heat loads on various leading edges of plasma facing components and possibly, their melting during plasma operation. The heated or already molten material can be destabilized during disruptions and droplets are emitted across the vacuum chamber. After solidification, the resulting rounded particles are either in pure elements or in alloys. Flake-like dust particles, which are mainly due to light material coating delamination, constitute the second class of dust particles.
Hyper Article en Lig... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Funded by:EC | EUROfusion, ANR | WHeSCI, EC | EUROfusionEC| EUROfusion ,ANR| WHeSCI ,EC| EUROfusionDelaporte-Mathurin, Rémi; Hodille, Etienne; Mougenot, Jonathan; Charles, Y.; de Temmerman, Gregory; Leblond, Floriane; Grisolia, Christian;A novel identification technique of hydrogen transport parameters using FESTIM (Finite Element Simulation of Tritium In Materials) has been demonstrated. FESTIM is a finite element code developed with FEniCS performing hydrogen transport simulations. The trapping parameters (detrapping energies and trap densities) are identified for various materials (Tungsten, Aluminium, EUROFER and Beryllium) by automatically reproducing thermo-desorption experiments. Several optimisation algorithms are tested and the Nelder–Mead algorithm shows the best efficiency. An optimisation test problem with five free parameters took only a few hours to solve whereas optimisation cases with two free parameters took a few minutes. Limitations of this technique are shown and discussed.
Hyper Article en Lig... arrow_drop_down Université Paris 13: HALArticle . 2021Full-Text: https://hal.science/hal-03140867Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Paris 13: HALArticle . 2021Full-Text: https://hal.science/hal-03140867Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Funded by:EC | EUROfusion, ANR | WHeSCI, EC | EUROfusionEC| EUROfusion ,ANR| WHeSCI ,EC| EUROfusionDelaporte-Mathurin, Rémi; Hodille, Etienne; Mougenot, Jonathan; Charles, Y.; de Temmerman, Gregory; Leblond, Floriane; Grisolia, Christian;A novel identification technique of hydrogen transport parameters using FESTIM (Finite Element Simulation of Tritium In Materials) has been demonstrated. FESTIM is a finite element code developed with FEniCS performing hydrogen transport simulations. The trapping parameters (detrapping energies and trap densities) are identified for various materials (Tungsten, Aluminium, EUROFER and Beryllium) by automatically reproducing thermo-desorption experiments. Several optimisation algorithms are tested and the Nelder–Mead algorithm shows the best efficiency. An optimisation test problem with five free parameters took only a few hours to solve whereas optimisation cases with two free parameters took a few minutes. Limitations of this technique are shown and discussed.
Hyper Article en Lig... arrow_drop_down Université Paris 13: HALArticle . 2021Full-Text: https://hal.science/hal-03140867Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Paris 13: HALArticle . 2021Full-Text: https://hal.science/hal-03140867Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: Thomas, Boigontier; de Temmerman, Gregory; Girard, Robin; Lamarque-Lacoste, Julien; +2 AuthorsThomas, Boigontier; de Temmerman, Gregory; Girard, Robin; Lamarque-Lacoste, Julien; de la Motte Saint Pierre, Manon; Dubois, Anouck;In part 1 of our Hydrogen Series, the great variety of hydrogenproduction routes and technologies were presented andcompared based on their maturity and performances.Around the world and particularly in developed countries such asthe EU, there is a strong support for the development of hydrogenproduced by water-electrolysis and powered by renewableelectricity as it is one of the most mature and clean hydrogenproduction routes.This second part is dedicated to the analysis and comparisonof 2030 EU’s targets in terms of renewable hydrogen productionwith the pipeline of projects. It will also explore the possibility ofusing other low-carbon hydrogen production technologies thanwater electrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b9bdf0819b33e978e1933b8c7315503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b9bdf0819b33e978e1933b8c7315503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: Thomas, Boigontier; de Temmerman, Gregory; Girard, Robin; Lamarque-Lacoste, Julien; +2 AuthorsThomas, Boigontier; de Temmerman, Gregory; Girard, Robin; Lamarque-Lacoste, Julien; de la Motte Saint Pierre, Manon; Dubois, Anouck;In part 1 of our Hydrogen Series, the great variety of hydrogenproduction routes and technologies were presented andcompared based on their maturity and performances.Around the world and particularly in developed countries such asthe EU, there is a strong support for the development of hydrogenproduced by water-electrolysis and powered by renewableelectricity as it is one of the most mature and clean hydrogenproduction routes.This second part is dedicated to the analysis and comparisonof 2030 EU’s targets in terms of renewable hydrogen productionwith the pipeline of projects. It will also explore the possibility ofusing other low-carbon hydrogen production technologies thanwater electrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b9bdf0819b33e978e1933b8c7315503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b9bdf0819b33e978e1933b8c7315503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: de Temmerman, Gregory; de Rochette, François;In the late 1990s, the idea of directly removing CO2 from the atmosphere via large mechanical ‘filters’ first emerged. Since then, various direct air capture (DAC) concepts have been developed and several projects have been implemented worldwide. In recent years, DAC has increasingly drawn attention, provoking a broad range of reactions – from enthusiastic supporters of the technology to sceptics who criticize itshigh energy costs or the risks of mitigation deterrence it presents.How does DAC compare to other carbon dioxide removal (CDR) and carbon capture methods? Which role may this technology play in climate mitigationstrategies? What are the key challengesfor it to be deployed sustainably at largescale?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b80be98497834cb59947e0e0256e5b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b80be98497834cb59947e0e0256e5b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: de Temmerman, Gregory; de Rochette, François;In the late 1990s, the idea of directly removing CO2 from the atmosphere via large mechanical ‘filters’ first emerged. Since then, various direct air capture (DAC) concepts have been developed and several projects have been implemented worldwide. In recent years, DAC has increasingly drawn attention, provoking a broad range of reactions – from enthusiastic supporters of the technology to sceptics who criticize itshigh energy costs or the risks of mitigation deterrence it presents.How does DAC compare to other carbon dioxide removal (CDR) and carbon capture methods? Which role may this technology play in climate mitigationstrategies? What are the key challengesfor it to be deployed sustainably at largescale?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b80be98497834cb59947e0e0256e5b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b80be98497834cb59947e0e0256e5b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: Pahud, Kevin; Thomas, Boigontier; de Temmerman, Gregory; Girard, Robin;Measuring energy, whether supply or consumption, is crucial to define policy, or evaluate energy transition scenarios. To accomplish this, a reliable measuring instrument is essential. Primary energy is an important metric today, as it describes the supply to our energy system and its evolution.However, what worked well in a world dominated by fossil fuels is not suitable for a system that will primarily rely on renewables and electricity. It uses as a reference precisely what we are trying to move away from. Therefore, it is a measure rooted in the past that is bound to become obsolete as conventions used are not based on a physical reality and it fails to capture the impact of switching to more efficient technologies. In practice, primary energy heavily favors fossil fuels, which can create a discouraging impression that the transition to renewables is an unattainable goal. Moreover, from a methodological standpoint, the definition of primary energy is problematic and varies significantly among different organizations in various studies and reports that aim to shed light on our energy future.In this report, we aim to provide a more detailed examination of these flaws. We want to emphasize the central role of electrification in the energy transition, which is crucial for both decarbonization and energy efficiency. Focusing on final and useful energy measurements can offer a more accurate description of these dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::62ba200886949a53116839d37d5c34df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::62ba200886949a53116839d37d5c34df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: Pahud, Kevin; Thomas, Boigontier; de Temmerman, Gregory; Girard, Robin;Measuring energy, whether supply or consumption, is crucial to define policy, or evaluate energy transition scenarios. To accomplish this, a reliable measuring instrument is essential. Primary energy is an important metric today, as it describes the supply to our energy system and its evolution.However, what worked well in a world dominated by fossil fuels is not suitable for a system that will primarily rely on renewables and electricity. It uses as a reference precisely what we are trying to move away from. Therefore, it is a measure rooted in the past that is bound to become obsolete as conventions used are not based on a physical reality and it fails to capture the impact of switching to more efficient technologies. In practice, primary energy heavily favors fossil fuels, which can create a discouraging impression that the transition to renewables is an unattainable goal. Moreover, from a methodological standpoint, the definition of primary energy is problematic and varies significantly among different organizations in various studies and reports that aim to shed light on our energy future.In this report, we aim to provide a more detailed examination of these flaws. We want to emphasize the central role of electrification in the energy transition, which is crucial for both decarbonization and energy efficiency. Focusing on final and useful energy measurements can offer a more accurate description of these dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::62ba200886949a53116839d37d5c34df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::62ba200886949a53116839d37d5c34df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Germany, Germany, FinlandPublisher:Elsevier BV Funded by:EC | EUROfusion, EC | EUROfusionEC| EUROfusion ,EC| EUROfusionMichael Probst; S. Brezinsek; Thomas Schwarz-Selinger; Bastiaan J. Braams; Bastiaan J. Braams; Dmitriy Borodin; Elżbieta Fortuna-Zaleśna; Daisuke Nishijima; Hyun-Kyung Chung; Juri Romazanov; Anna Widdowson; E. Safi; Kalle Heinola; R.P. Doerner; Marek Rubel; Gregory De Temmerman; Christian Hill; Christian Linsmeier; Kai Nordlund;ITER will use beryllium as a plasma-facing material in the main chamber, covering a total surface area of about 620 m2. Given the importance of beryllium erosion and co-deposition for tritium retention in ITER, significant efforts have been made to understand the behaviour of beryllium under fusion-relevant conditions with high particle and heat loads. This paper provides a comprehensive report on the state of knowledge of beryllium behaviour under fusion-relevant conditions: the erosion mechanisms and their consequences, beryllium migration in JET, fuel retention and dust generation. The paper reviews basic laboratory studies, advanced computer simulations and experience from laboratory plasma experiments in linear simulators of plasma–wall interactions and in controlled fusion devices using beryllium plasma-facing components. A critical assessment of analytical methods and simulation codes used in beryllium studies is given. The overall objective is to review the existing set of data with a broad literature survey and to identify gaps and research needs to broaden the database for ITER.
MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03257150Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100994&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03257150Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100994&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Germany, Germany, FinlandPublisher:Elsevier BV Funded by:EC | EUROfusion, EC | EUROfusionEC| EUROfusion ,EC| EUROfusionMichael Probst; S. Brezinsek; Thomas Schwarz-Selinger; Bastiaan J. Braams; Bastiaan J. Braams; Dmitriy Borodin; Elżbieta Fortuna-Zaleśna; Daisuke Nishijima; Hyun-Kyung Chung; Juri Romazanov; Anna Widdowson; E. Safi; Kalle Heinola; R.P. Doerner; Marek Rubel; Gregory De Temmerman; Christian Hill; Christian Linsmeier; Kai Nordlund;ITER will use beryllium as a plasma-facing material in the main chamber, covering a total surface area of about 620 m2. Given the importance of beryllium erosion and co-deposition for tritium retention in ITER, significant efforts have been made to understand the behaviour of beryllium under fusion-relevant conditions with high particle and heat loads. This paper provides a comprehensive report on the state of knowledge of beryllium behaviour under fusion-relevant conditions: the erosion mechanisms and their consequences, beryllium migration in JET, fuel retention and dust generation. The paper reviews basic laboratory studies, advanced computer simulations and experience from laboratory plasma experiments in linear simulators of plasma–wall interactions and in controlled fusion devices using beryllium plasma-facing components. A critical assessment of analytical methods and simulation codes used in beryllium studies is given. The overall objective is to review the existing set of data with a broad literature survey and to identify gaps and research needs to broaden the database for ITER.
MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03257150Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100994&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03257150Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100994&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 FrancePublisher:Elsevier BV Arnas, Cécile; Irby, James; Celli, Sébastien; de Temmerman, Gregory; Addab, Younes; Couëdel, Lenaic; Grisolia, Christian; Lin, Yijun; Martin, Céline; Pardanaud, Cédric; Pierson, Samuel;Post mortem analyses of dust collected in Alcator C-Mod have highlighted a production of large size dust particles. The quantities of such large particles are higher than in any other tokamak. They are divided in two classes as a function of their shape and consequently, their origin. Rounded dust particles such as spheres and splashes constitute the first class. These particles are the result of high heat loads on various leading edges of plasma facing components and possibly, their melting during plasma operation. The heated or already molten material can be destabilized during disruptions and droplets are emitted across the vacuum chamber. After solidification, the resulting rounded particles are either in pure elements or in alloys. Flake-like dust particles, which are mainly due to light material coating delamination, constitute the second class of dust particles.
Hyper Article en Lig... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 FrancePublisher:Elsevier BV Arnas, Cécile; Irby, James; Celli, Sébastien; de Temmerman, Gregory; Addab, Younes; Couëdel, Lenaic; Grisolia, Christian; Lin, Yijun; Martin, Céline; Pardanaud, Cédric; Pierson, Samuel;Post mortem analyses of dust collected in Alcator C-Mod have highlighted a production of large size dust particles. The quantities of such large particles are higher than in any other tokamak. They are divided in two classes as a function of their shape and consequently, their origin. Rounded dust particles such as spheres and splashes constitute the first class. These particles are the result of high heat loads on various leading edges of plasma facing components and possibly, their melting during plasma operation. The heated or already molten material can be destabilized during disruptions and droplets are emitted across the vacuum chamber. After solidification, the resulting rounded particles are either in pure elements or in alloys. Flake-like dust particles, which are mainly due to light material coating delamination, constitute the second class of dust particles.
Hyper Article en Lig... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Funded by:EC | EUROfusion, ANR | WHeSCI, EC | EUROfusionEC| EUROfusion ,ANR| WHeSCI ,EC| EUROfusionDelaporte-Mathurin, Rémi; Hodille, Etienne; Mougenot, Jonathan; Charles, Y.; de Temmerman, Gregory; Leblond, Floriane; Grisolia, Christian;A novel identification technique of hydrogen transport parameters using FESTIM (Finite Element Simulation of Tritium In Materials) has been demonstrated. FESTIM is a finite element code developed with FEniCS performing hydrogen transport simulations. The trapping parameters (detrapping energies and trap densities) are identified for various materials (Tungsten, Aluminium, EUROFER and Beryllium) by automatically reproducing thermo-desorption experiments. Several optimisation algorithms are tested and the Nelder–Mead algorithm shows the best efficiency. An optimisation test problem with five free parameters took only a few hours to solve whereas optimisation cases with two free parameters took a few minutes. Limitations of this technique are shown and discussed.
Hyper Article en Lig... arrow_drop_down Université Paris 13: HALArticle . 2021Full-Text: https://hal.science/hal-03140867Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Paris 13: HALArticle . 2021Full-Text: https://hal.science/hal-03140867Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Funded by:EC | EUROfusion, ANR | WHeSCI, EC | EUROfusionEC| EUROfusion ,ANR| WHeSCI ,EC| EUROfusionDelaporte-Mathurin, Rémi; Hodille, Etienne; Mougenot, Jonathan; Charles, Y.; de Temmerman, Gregory; Leblond, Floriane; Grisolia, Christian;A novel identification technique of hydrogen transport parameters using FESTIM (Finite Element Simulation of Tritium In Materials) has been demonstrated. FESTIM is a finite element code developed with FEniCS performing hydrogen transport simulations. The trapping parameters (detrapping energies and trap densities) are identified for various materials (Tungsten, Aluminium, EUROFER and Beryllium) by automatically reproducing thermo-desorption experiments. Several optimisation algorithms are tested and the Nelder–Mead algorithm shows the best efficiency. An optimisation test problem with five free parameters took only a few hours to solve whereas optimisation cases with two free parameters took a few minutes. Limitations of this technique are shown and discussed.
Hyper Article en Lig... arrow_drop_down Université Paris 13: HALArticle . 2021Full-Text: https://hal.science/hal-03140867Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Paris 13: HALArticle . 2021Full-Text: https://hal.science/hal-03140867Data sources: Bielefeld Academic Search Engine (BASE)Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: Thomas, Boigontier; de Temmerman, Gregory; Girard, Robin; Lamarque-Lacoste, Julien; +2 AuthorsThomas, Boigontier; de Temmerman, Gregory; Girard, Robin; Lamarque-Lacoste, Julien; de la Motte Saint Pierre, Manon; Dubois, Anouck;In part 1 of our Hydrogen Series, the great variety of hydrogenproduction routes and technologies were presented andcompared based on their maturity and performances.Around the world and particularly in developed countries such asthe EU, there is a strong support for the development of hydrogenproduced by water-electrolysis and powered by renewableelectricity as it is one of the most mature and clean hydrogenproduction routes.This second part is dedicated to the analysis and comparisonof 2030 EU’s targets in terms of renewable hydrogen productionwith the pipeline of projects. It will also explore the possibility ofusing other low-carbon hydrogen production technologies thanwater electrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b9bdf0819b33e978e1933b8c7315503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b9bdf0819b33e978e1933b8c7315503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: Thomas, Boigontier; de Temmerman, Gregory; Girard, Robin; Lamarque-Lacoste, Julien; +2 AuthorsThomas, Boigontier; de Temmerman, Gregory; Girard, Robin; Lamarque-Lacoste, Julien; de la Motte Saint Pierre, Manon; Dubois, Anouck;In part 1 of our Hydrogen Series, the great variety of hydrogenproduction routes and technologies were presented andcompared based on their maturity and performances.Around the world and particularly in developed countries such asthe EU, there is a strong support for the development of hydrogenproduced by water-electrolysis and powered by renewableelectricity as it is one of the most mature and clean hydrogenproduction routes.This second part is dedicated to the analysis and comparisonof 2030 EU’s targets in terms of renewable hydrogen productionwith the pipeline of projects. It will also explore the possibility ofusing other low-carbon hydrogen production technologies thanwater electrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b9bdf0819b33e978e1933b8c7315503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b9bdf0819b33e978e1933b8c7315503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: de Temmerman, Gregory; de Rochette, François;In the late 1990s, the idea of directly removing CO2 from the atmosphere via large mechanical ‘filters’ first emerged. Since then, various direct air capture (DAC) concepts have been developed and several projects have been implemented worldwide. In recent years, DAC has increasingly drawn attention, provoking a broad range of reactions – from enthusiastic supporters of the technology to sceptics who criticize itshigh energy costs or the risks of mitigation deterrence it presents.How does DAC compare to other carbon dioxide removal (CDR) and carbon capture methods? Which role may this technology play in climate mitigationstrategies? What are the key challengesfor it to be deployed sustainably at largescale?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b80be98497834cb59947e0e0256e5b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b80be98497834cb59947e0e0256e5b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: de Temmerman, Gregory; de Rochette, François;In the late 1990s, the idea of directly removing CO2 from the atmosphere via large mechanical ‘filters’ first emerged. Since then, various direct air capture (DAC) concepts have been developed and several projects have been implemented worldwide. In recent years, DAC has increasingly drawn attention, provoking a broad range of reactions – from enthusiastic supporters of the technology to sceptics who criticize itshigh energy costs or the risks of mitigation deterrence it presents.How does DAC compare to other carbon dioxide removal (CDR) and carbon capture methods? Which role may this technology play in climate mitigationstrategies? What are the key challengesfor it to be deployed sustainably at largescale?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b80be98497834cb59947e0e0256e5b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::9b80be98497834cb59947e0e0256e5b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: Pahud, Kevin; Thomas, Boigontier; de Temmerman, Gregory; Girard, Robin;Measuring energy, whether supply or consumption, is crucial to define policy, or evaluate energy transition scenarios. To accomplish this, a reliable measuring instrument is essential. Primary energy is an important metric today, as it describes the supply to our energy system and its evolution.However, what worked well in a world dominated by fossil fuels is not suitable for a system that will primarily rely on renewables and electricity. It uses as a reference precisely what we are trying to move away from. Therefore, it is a measure rooted in the past that is bound to become obsolete as conventions used are not based on a physical reality and it fails to capture the impact of switching to more efficient technologies. In practice, primary energy heavily favors fossil fuels, which can create a discouraging impression that the transition to renewables is an unattainable goal. Moreover, from a methodological standpoint, the definition of primary energy is problematic and varies significantly among different organizations in various studies and reports that aim to shed light on our energy future.In this report, we aim to provide a more detailed examination of these flaws. We want to emphasize the central role of electrification in the energy transition, which is crucial for both decarbonization and energy efficiency. Focusing on final and useful energy measurements can offer a more accurate description of these dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::62ba200886949a53116839d37d5c34df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::62ba200886949a53116839d37d5c34df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2023 FrancePublisher:HAL CCSD Authors: Pahud, Kevin; Thomas, Boigontier; de Temmerman, Gregory; Girard, Robin;Measuring energy, whether supply or consumption, is crucial to define policy, or evaluate energy transition scenarios. To accomplish this, a reliable measuring instrument is essential. Primary energy is an important metric today, as it describes the supply to our energy system and its evolution.However, what worked well in a world dominated by fossil fuels is not suitable for a system that will primarily rely on renewables and electricity. It uses as a reference precisely what we are trying to move away from. Therefore, it is a measure rooted in the past that is bound to become obsolete as conventions used are not based on a physical reality and it fails to capture the impact of switching to more efficient technologies. In practice, primary energy heavily favors fossil fuels, which can create a discouraging impression that the transition to renewables is an unattainable goal. Moreover, from a methodological standpoint, the definition of primary energy is problematic and varies significantly among different organizations in various studies and reports that aim to shed light on our energy future.In this report, we aim to provide a more detailed examination of these flaws. We want to emphasize the central role of electrification in the energy transition, which is crucial for both decarbonization and energy efficiency. Focusing on final and useful energy measurements can offer a more accurate description of these dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::62ba200886949a53116839d37d5c34df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::62ba200886949a53116839d37d5c34df&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu