- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Embargo end date: 20 Sep 2018 United Kingdom, Ireland, IrelandPublisher:Public Library of Science (PLoS) Publicly fundedLauria, Valentina; Attrill, Martin J; Pinnegar, John K; Brown, Andrew; Edwards, Martin; Votier, Stephen C;Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66 +/- 0.02 degrees C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST ( 0- group: p = 0.02, slope = -0.30560.125; 1-group: p = 0.04, slope = -0.410 +/- 0.193). Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO ( on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 +/- 0.014) as well as indirect bottom- up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 +/- 0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2012 . Peer-reviewedData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2012License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/23091621Data sources: Bielefeld Academic Search Engine (BASE)National University of Ireland (NUI), Galway: ARANArticle . 2012License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/12390Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2012License: CC BY NC NDData sources: University of Galway Research RepositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0047408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2012 . Peer-reviewedData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2012License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/23091621Data sources: Bielefeld Academic Search Engine (BASE)National University of Ireland (NUI), Galway: ARANArticle . 2012License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/12390Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2012License: CC BY NC NDData sources: University of Galway Research RepositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0047408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Spain, United Kingdom, United KingdomPublisher:Elsevier BV Susan Kay; Iñaki Arto; Patrick K. Ofori-Danson; Valentina Lauria; Valentina Lauria; Jose A. Fernandes; Sugata Hazra; Munir Ahmed; Manuel Barange; Isha Das; Ignacio Cazcarro; Mostafa A. R. Hossain;pmid: 30021321
Deltas are home to a large and growing proportion of the world's population, often living in conditions of extreme poverty. Deltaic ecosystems are ecologically significant as they support high biodiversity and a variety of fisheries, however these coastal environments are extremely vulnerable to climate change. The Ganges-Brahmaputra-Meghna (Bangladesh/India), the Mahanadi (India), and the Volta (Ghana) are among the most important and populous delta regions in the world and they are all considered at risk of food insecurity and climate change. The fisheries sector is vital for populations that live in the three deltas, as a source of animal protein (in Bangladesh and Ghana around 50-60% of animal protein is supplied by fish while in India this is about 12%) through subsistence fishing, as a source of employment and for the wider economy. The aquaculture sector shows a rapid growth in Bangladesh and India while in Ghana this is just starting to expand. The main exported species differ across countries with Ghana and India dominated by marine fish species, whereas Bangladesh exports shrimps and prawns. Fisheries play a more important part in the economy of Bangladesh and Ghana than for India, both men and women work in fisheries, with a higher proportion of women in the Volta then in the Asian deltas. Economic and integrated modelling using future scenarios suggest that changes in temperature and primary production could reduce fish productivity and fisheries income especially in the Volta and Bangladesh deltas, however these losses could be mitigated by reducing overfishing and improving management. The analysis provided in this paper highlights the importance of applying plans for fisheries management at regional level. Minimizing the impacts of climate change while increasing marine ecosystems resilience must be a priority for scientists and governments before these have dramatic impacts on millions of people's lives.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2018Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2018Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Italy, FrancePublisher:Elsevier BV Millot, Jade; Georges, Vincent; Lauria, Valentina; Hattab, Tarek; Dominguez-Carrió, Carlos; Gerovasileiou, Vasilis; Smith, Christopher J.; Mytilineou, Chryssi; Teresa Farriols, M.; Fabri, Marie-Claire; Carbonara, Pierluigi; Massi, Daniela; Rinelli, Paola; Profeta, Adriana; Chimienti, Giovanni; Jadaud, Angélique; Thasitis, Ioannis; Camilleri, Kelly; Mifsud, Jurgen; Vaz, Sandrine;handle: 20.500.14243/511346 , 10261/375350
Crinoid beds of Leptometra phalangium (Müller, 1841) have been identified as sensitive habitats by the General Fisheries Commission for the Mediterranean (GFCM) due to their high vulnerability to bottom trawl fisheries. Poorly resilient to physical damage, L. phalangium has been listed as a potential indicator of Vulnerable Marine Ecosystems (VMEs) in the Mediterranean Sea. If fishing activities represent the main cause of habitat destruction for this species, the ongoing changes in climate conditions may rapidly exacerbate the process. In this study, we developed an ensemble Species Distribution Modeling framework to predict the potential habitat of L. phalangium for present-days in the Mediterranean Sea, and used the model to infer potential changes in its spatial distribution by 2050 under two different climate scenarios (IPCC Representative Concentration Pathways RCP2.6 and RCP8.5). True presence-absence records were used and correlated to a parsimonious set of environmental predictors considered as important drivers of benthic species distribution. In present conditions, L. phalangium seems to be widely distributed along the continental slopes of the western and central Mediterranean. This crinoid is often described as confined to the continental shelf-break (100–200 m), but our results show that it can be found over a wider depth range, between 100 and 500 m. Our predictions obtained for the mid-21st century indicate an important habitat loss for L. phalangium under future climate conditions, mainly in the central and southern basins. Declines of 50 to 70 % in its suitable habitat were predicted under RCP2.6 and RCP8.5 compared to present-day predictions. Climate refugia (i.e., areas where environmental conditions remain suitable for the species in the future) were restricted to the northwestern basin (e.g., Gulf of Lion, the Catalan Sea, the Balearic Sea, Ligurian Sea) and in the southern Adriatic Sea. Provided by a robust statistical framework, climate refugia predictions, along with uncertainty assessments, must support the identification of priority areas for the conservation of VME indicator species by governmental bodies and regional management organizations.
IRIS Cnr arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2024.103355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 42visibility views 42 download downloads 1 Powered bymore_vert IRIS Cnr arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2024.103355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Quattrocchi, Federico; Fiorentino, Fabio; Lauria, Valentina; Garofalo, Germana;handle: 20.500.14243/526774 , 10447/583916
Abstract The deep-water rose shrimp Parapenaeus longirostris (DPS), a demersal decapod representing the most important component of crustacean landings in the Mediterranean Sea, has been suggested as a species that may exhibit temperature-driven changes in the spatio-temporal dynamics. Considering that Mediterranean waters are warming up faster than oceans, understanding the relationships of DPS populations with temperature variations and the related changes in spatial patterns is absolutely key for its management. Using a long-term dataset covering 13-years from scientific surveys (International Bottom Trawl-Surveys in the Mediterranean, MEDITS; Italian national trawl surveys, GRUND) in the Strait of Sicily (central Mediterranean Sea), the annual DPS spatial patches and the depth distribution were investigated using geostatistical and quotient analyses. The patches dimension and depth range occupation were then related to sea temperature by using linear regression analysis. Results showed that both the dimension of DPS spatial patches and the depth distribution range occupied increased concurrently with temperature. Our findings corroborate that the ongoing sea warming widen areas suitable for this species and in which it can expand its spatial distribution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seares.2020.101871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seares.2020.101871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Embargo end date: 20 Sep 2018 United Kingdom, Ireland, IrelandPublisher:Public Library of Science (PLoS) Publicly fundedLauria, Valentina; Attrill, Martin J; Pinnegar, John K; Brown, Andrew; Edwards, Martin; Votier, Stephen C;Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66 +/- 0.02 degrees C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST ( 0- group: p = 0.02, slope = -0.30560.125; 1-group: p = 0.04, slope = -0.410 +/- 0.193). Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO ( on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 +/- 0.014) as well as indirect bottom- up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 +/- 0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2012 . Peer-reviewedData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2012License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/23091621Data sources: Bielefeld Academic Search Engine (BASE)National University of Ireland (NUI), Galway: ARANArticle . 2012License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/12390Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2012License: CC BY NC NDData sources: University of Galway Research RepositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0047408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2012 . Peer-reviewedData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2012License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/23091621Data sources: Bielefeld Academic Search Engine (BASE)National University of Ireland (NUI), Galway: ARANArticle . 2012License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/12390Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2012License: CC BY NC NDData sources: University of Galway Research RepositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0047408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Spain, United Kingdom, United KingdomPublisher:Elsevier BV Susan Kay; Iñaki Arto; Patrick K. Ofori-Danson; Valentina Lauria; Valentina Lauria; Jose A. Fernandes; Sugata Hazra; Munir Ahmed; Manuel Barange; Isha Das; Ignacio Cazcarro; Mostafa A. R. Hossain;pmid: 30021321
Deltas are home to a large and growing proportion of the world's population, often living in conditions of extreme poverty. Deltaic ecosystems are ecologically significant as they support high biodiversity and a variety of fisheries, however these coastal environments are extremely vulnerable to climate change. The Ganges-Brahmaputra-Meghna (Bangladesh/India), the Mahanadi (India), and the Volta (Ghana) are among the most important and populous delta regions in the world and they are all considered at risk of food insecurity and climate change. The fisheries sector is vital for populations that live in the three deltas, as a source of animal protein (in Bangladesh and Ghana around 50-60% of animal protein is supplied by fish while in India this is about 12%) through subsistence fishing, as a source of employment and for the wider economy. The aquaculture sector shows a rapid growth in Bangladesh and India while in Ghana this is just starting to expand. The main exported species differ across countries with Ghana and India dominated by marine fish species, whereas Bangladesh exports shrimps and prawns. Fisheries play a more important part in the economy of Bangladesh and Ghana than for India, both men and women work in fisheries, with a higher proportion of women in the Volta then in the Asian deltas. Economic and integrated modelling using future scenarios suggest that changes in temperature and primary production could reduce fish productivity and fisheries income especially in the Volta and Bangladesh deltas, however these losses could be mitigated by reducing overfishing and improving management. The analysis provided in this paper highlights the importance of applying plans for fisheries management at regional level. Minimizing the impacts of climate change while increasing marine ecosystems resilience must be a priority for scientists and governments before these have dramatic impacts on millions of people's lives.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2018Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2018Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Italy, FrancePublisher:Elsevier BV Millot, Jade; Georges, Vincent; Lauria, Valentina; Hattab, Tarek; Dominguez-Carrió, Carlos; Gerovasileiou, Vasilis; Smith, Christopher J.; Mytilineou, Chryssi; Teresa Farriols, M.; Fabri, Marie-Claire; Carbonara, Pierluigi; Massi, Daniela; Rinelli, Paola; Profeta, Adriana; Chimienti, Giovanni; Jadaud, Angélique; Thasitis, Ioannis; Camilleri, Kelly; Mifsud, Jurgen; Vaz, Sandrine;handle: 20.500.14243/511346 , 10261/375350
Crinoid beds of Leptometra phalangium (Müller, 1841) have been identified as sensitive habitats by the General Fisheries Commission for the Mediterranean (GFCM) due to their high vulnerability to bottom trawl fisheries. Poorly resilient to physical damage, L. phalangium has been listed as a potential indicator of Vulnerable Marine Ecosystems (VMEs) in the Mediterranean Sea. If fishing activities represent the main cause of habitat destruction for this species, the ongoing changes in climate conditions may rapidly exacerbate the process. In this study, we developed an ensemble Species Distribution Modeling framework to predict the potential habitat of L. phalangium for present-days in the Mediterranean Sea, and used the model to infer potential changes in its spatial distribution by 2050 under two different climate scenarios (IPCC Representative Concentration Pathways RCP2.6 and RCP8.5). True presence-absence records were used and correlated to a parsimonious set of environmental predictors considered as important drivers of benthic species distribution. In present conditions, L. phalangium seems to be widely distributed along the continental slopes of the western and central Mediterranean. This crinoid is often described as confined to the continental shelf-break (100–200 m), but our results show that it can be found over a wider depth range, between 100 and 500 m. Our predictions obtained for the mid-21st century indicate an important habitat loss for L. phalangium under future climate conditions, mainly in the central and southern basins. Declines of 50 to 70 % in its suitable habitat were predicted under RCP2.6 and RCP8.5 compared to present-day predictions. Climate refugia (i.e., areas where environmental conditions remain suitable for the species in the future) were restricted to the northwestern basin (e.g., Gulf of Lion, the Catalan Sea, the Balearic Sea, Ligurian Sea) and in the southern Adriatic Sea. Provided by a robust statistical framework, climate refugia predictions, along with uncertainty assessments, must support the identification of priority areas for the conservation of VME indicator species by governmental bodies and regional management organizations.
IRIS Cnr arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2024.103355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 42visibility views 42 download downloads 1 Powered bymore_vert IRIS Cnr arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2024.103355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Quattrocchi, Federico; Fiorentino, Fabio; Lauria, Valentina; Garofalo, Germana;handle: 20.500.14243/526774 , 10447/583916
Abstract The deep-water rose shrimp Parapenaeus longirostris (DPS), a demersal decapod representing the most important component of crustacean landings in the Mediterranean Sea, has been suggested as a species that may exhibit temperature-driven changes in the spatio-temporal dynamics. Considering that Mediterranean waters are warming up faster than oceans, understanding the relationships of DPS populations with temperature variations and the related changes in spatial patterns is absolutely key for its management. Using a long-term dataset covering 13-years from scientific surveys (International Bottom Trawl-Surveys in the Mediterranean, MEDITS; Italian national trawl surveys, GRUND) in the Strait of Sicily (central Mediterranean Sea), the annual DPS spatial patches and the depth distribution were investigated using geostatistical and quotient analyses. The patches dimension and depth range occupation were then related to sea temperature by using linear regression analysis. Results showed that both the dimension of DPS spatial patches and the depth distribution range occupied increased concurrently with temperature. Our findings corroborate that the ongoing sea warming widen areas suitable for this species and in which it can expand its spatial distribution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seares.2020.101871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seares.2020.101871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu