- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Monica B. Emelko; Micheal Stone; Uldis Silins; Kevin D. Bladon;pmid: 20951401
Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship to "treatability" in response to land disturbance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.08.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.08.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Monica B. Emelko; Micheal Stone; Uldis Silins; Kevin D. Bladon;pmid: 20951401
Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship to "treatability" in response to land disturbance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.08.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.08.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Switzerland, Portugal, Sweden, Netherlands, Australia, Portugal, United KingdomPublisher:Wiley Funded by:EC | PyroLife, EC | HydroSocialExtremes, UKRI | Fire and water: predictin...EC| PyroLife ,EC| HydroSocialExtremes ,UKRI| Fire and water: predicting and mitigating water pollution risk from wildfire ashJames M. Waddington; Christian Bréthaut; Cristina Santín; Stefan H. Doerr; Cathelijne R. Stoof; Louise Gallagher; Stuart J. Khan; Giuliano Di Baldassarre; João Pedro Nunes; Matthew P. Thompson; Amanda K. Hohner; Rua S. Mordecai; Rua S. Mordecai; Alicia M. Kinoshita; Gary Sheridan; Kevin D. Bladon; Dennis W. Hallema; François-Nicolas Robinne; Yu Wei; Mike D. Flannigan; Gabrielle Boisramé; Petter Nyman;Abstract2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019–2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water‐related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation (“200 mm day −1 in several location”) that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post‐fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long‐term risks to drinking water production, aquatic life, and socio‐economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all‐around of the world. Therefore, we advocate for a more proactive approach to wildfire‐watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post‐fire hydrology.
Hydrological Process... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/281019Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.14086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hydrological Process... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/281019Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.14086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Switzerland, Portugal, Sweden, Netherlands, Australia, Portugal, United KingdomPublisher:Wiley Funded by:EC | PyroLife, EC | HydroSocialExtremes, UKRI | Fire and water: predictin...EC| PyroLife ,EC| HydroSocialExtremes ,UKRI| Fire and water: predicting and mitigating water pollution risk from wildfire ashJames M. Waddington; Christian Bréthaut; Cristina Santín; Stefan H. Doerr; Cathelijne R. Stoof; Louise Gallagher; Stuart J. Khan; Giuliano Di Baldassarre; João Pedro Nunes; Matthew P. Thompson; Amanda K. Hohner; Rua S. Mordecai; Rua S. Mordecai; Alicia M. Kinoshita; Gary Sheridan; Kevin D. Bladon; Dennis W. Hallema; François-Nicolas Robinne; Yu Wei; Mike D. Flannigan; Gabrielle Boisramé; Petter Nyman;Abstract2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019–2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water‐related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation (“200 mm day −1 in several location”) that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post‐fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long‐term risks to drinking water production, aquatic life, and socio‐economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all‐around of the world. Therefore, we advocate for a more proactive approach to wildfire‐watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post‐fire hydrology.
Hydrological Process... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/281019Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.14086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hydrological Process... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/281019Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.14086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Geophysical Union (AGU) Authors: François-Nicolas Robinne; Dennis W. Hallema; Dennis W. Hallema; Kevin D. Bladon;doi: 10.1029/2018ef000867
AbstractThe timing, extent, and severity of forest wildfires have increased in many parts of the world in recent decades. These wildfires can have substantial and devastating impacts on water supply, ecohydrological systems, and sociohydrosystems. Existing frameworks to assess the magnitude and spatial extent of these effects generally focus on local processes or services and are not readily transferable to other regions. However, there is a growing need for regional, continental, and global scale indices to assess the potential effect of wildfires on freshwater availability and water supply resilience. Such indices must consider both the individual and compound effects of wildfires. In so doing, this will enable comprehensive insights on the water security paradigm and the value of hydrological services in fire‐affected areas around the globe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Geophysical Union (AGU) Authors: François-Nicolas Robinne; Dennis W. Hallema; Dennis W. Hallema; Kevin D. Bladon;doi: 10.1029/2018ef000867
AbstractThe timing, extent, and severity of forest wildfires have increased in many parts of the world in recent decades. These wildfires can have substantial and devastating impacts on water supply, ecohydrological systems, and sociohydrosystems. Existing frameworks to assess the magnitude and spatial extent of these effects generally focus on local processes or services and are not readily transferable to other regions. However, there is a growing need for regional, continental, and global scale indices to assess the potential effect of wildfires on freshwater availability and water supply resilience. Such indices must consider both the individual and compound effects of wildfires. In so doing, this will enable comprehensive insights on the water security paradigm and the value of hydrological services in fire‐affected areas around the globe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Authors: Micheal Stone; Uldis Silins; Monica B. Emelko; Kevin D. Bladon;doi: 10.1021/es500130g
pmid: 25007310
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es500130g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 244 citations 244 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es500130g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Authors: Micheal Stone; Uldis Silins; Monica B. Emelko; Kevin D. Bladon;doi: 10.1021/es500130g
pmid: 25007310
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es500130g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 244 citations 244 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es500130g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Monica B. Emelko; Micheal Stone; Uldis Silins; Kevin D. Bladon;pmid: 20951401
Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship to "treatability" in response to land disturbance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.08.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.08.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Monica B. Emelko; Micheal Stone; Uldis Silins; Kevin D. Bladon;pmid: 20951401
Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship to "treatability" in response to land disturbance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.08.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.08.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Switzerland, Portugal, Sweden, Netherlands, Australia, Portugal, United KingdomPublisher:Wiley Funded by:EC | PyroLife, EC | HydroSocialExtremes, UKRI | Fire and water: predictin...EC| PyroLife ,EC| HydroSocialExtremes ,UKRI| Fire and water: predicting and mitigating water pollution risk from wildfire ashJames M. Waddington; Christian Bréthaut; Cristina Santín; Stefan H. Doerr; Cathelijne R. Stoof; Louise Gallagher; Stuart J. Khan; Giuliano Di Baldassarre; João Pedro Nunes; Matthew P. Thompson; Amanda K. Hohner; Rua S. Mordecai; Rua S. Mordecai; Alicia M. Kinoshita; Gary Sheridan; Kevin D. Bladon; Dennis W. Hallema; François-Nicolas Robinne; Yu Wei; Mike D. Flannigan; Gabrielle Boisramé; Petter Nyman;Abstract2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019–2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water‐related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation (“200 mm day −1 in several location”) that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post‐fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long‐term risks to drinking water production, aquatic life, and socio‐economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all‐around of the world. Therefore, we advocate for a more proactive approach to wildfire‐watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post‐fire hydrology.
Hydrological Process... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/281019Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.14086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hydrological Process... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/281019Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.14086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Switzerland, Portugal, Sweden, Netherlands, Australia, Portugal, United KingdomPublisher:Wiley Funded by:EC | PyroLife, EC | HydroSocialExtremes, UKRI | Fire and water: predictin...EC| PyroLife ,EC| HydroSocialExtremes ,UKRI| Fire and water: predicting and mitigating water pollution risk from wildfire ashJames M. Waddington; Christian Bréthaut; Cristina Santín; Stefan H. Doerr; Cathelijne R. Stoof; Louise Gallagher; Stuart J. Khan; Giuliano Di Baldassarre; João Pedro Nunes; Matthew P. Thompson; Amanda K. Hohner; Rua S. Mordecai; Rua S. Mordecai; Alicia M. Kinoshita; Gary Sheridan; Kevin D. Bladon; Dennis W. Hallema; François-Nicolas Robinne; Yu Wei; Mike D. Flannigan; Gabrielle Boisramé; Petter Nyman;Abstract2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019–2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water‐related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation (“200 mm day −1 in several location”) that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post‐fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long‐term risks to drinking water production, aquatic life, and socio‐economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all‐around of the world. Therefore, we advocate for a more proactive approach to wildfire‐watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post‐fire hydrology.
Hydrological Process... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/281019Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.14086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hydrological Process... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/281019Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.14086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Geophysical Union (AGU) Authors: François-Nicolas Robinne; Dennis W. Hallema; Dennis W. Hallema; Kevin D. Bladon;doi: 10.1029/2018ef000867
AbstractThe timing, extent, and severity of forest wildfires have increased in many parts of the world in recent decades. These wildfires can have substantial and devastating impacts on water supply, ecohydrological systems, and sociohydrosystems. Existing frameworks to assess the magnitude and spatial extent of these effects generally focus on local processes or services and are not readily transferable to other regions. However, there is a growing need for regional, continental, and global scale indices to assess the potential effect of wildfires on freshwater availability and water supply resilience. Such indices must consider both the individual and compound effects of wildfires. In so doing, this will enable comprehensive insights on the water security paradigm and the value of hydrological services in fire‐affected areas around the globe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Geophysical Union (AGU) Authors: François-Nicolas Robinne; Dennis W. Hallema; Dennis W. Hallema; Kevin D. Bladon;doi: 10.1029/2018ef000867
AbstractThe timing, extent, and severity of forest wildfires have increased in many parts of the world in recent decades. These wildfires can have substantial and devastating impacts on water supply, ecohydrological systems, and sociohydrosystems. Existing frameworks to assess the magnitude and spatial extent of these effects generally focus on local processes or services and are not readily transferable to other regions. However, there is a growing need for regional, continental, and global scale indices to assess the potential effect of wildfires on freshwater availability and water supply resilience. Such indices must consider both the individual and compound effects of wildfires. In so doing, this will enable comprehensive insights on the water security paradigm and the value of hydrological services in fire‐affected areas around the globe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Authors: Micheal Stone; Uldis Silins; Monica B. Emelko; Kevin D. Bladon;doi: 10.1021/es500130g
pmid: 25007310
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es500130g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 244 citations 244 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es500130g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Authors: Micheal Stone; Uldis Silins; Monica B. Emelko; Kevin D. Bladon;doi: 10.1021/es500130g
pmid: 25007310
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es500130g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 244 citations 244 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es500130g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu