- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2007 FrancePublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Benbouzid, Mohamed; Diallo, Demba; Zeraoulia, Mounir;This paper describes active fault-tolerant control systems for a high-performance induction-motor drive that propels an electrical vehicle (EV) or a hybrid one (HEV). The proposed systems adaptively reorganize themselves in the event of sensor loss or sensor recovery to sustain the best control performance, given the complement of remaining sensors. Moreover, the developed systems take into account the controller-transition smoothness, in terms of speed and torque transients. The two proposed fault-tolerant control strategies have been simulated on a 4-kW induction-motor drive, and speed and torque responses have been carried to evaluate the consistency and the performance of the proposed approaches. Simulation results, in terms of speed and torque responses, show the global effectiveness of the proposed approaches, particularly the one based on modern and intelligent control techniques in terms of speed and torque smoothness
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverUniversité de Bretagne Occidentale: HALArticle . 2007Full-Text: https://hal.science/hal-00524607Data sources: Bielefeld Academic Search Engine (BASE)Supélec (Ecole supérieure d'électricité): Publications scientifiques (HAL)Article . 2007Full-Text: https://hal.science/hal-00524607Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Vehicular TechnologyArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2006.889579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 152 citations 152 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverUniversité de Bretagne Occidentale: HALArticle . 2007Full-Text: https://hal.science/hal-00524607Data sources: Bielefeld Academic Search Engine (BASE)Supélec (Ecole supérieure d'électricité): Publications scientifiques (HAL)Article . 2007Full-Text: https://hal.science/hal-00524607Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Vehicular TechnologyArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2006.889579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Chuanyong Shao; Anne Migan-Dubois; Demba Diallo;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Authors: Elaheh Heydari; Elaheh Heydari; Demba Diallo; Ali Yazdian Varjani;Abstract Today, grid-connected photovoltaic systems have gained widespread penetration among renewable energy systems. For low power applications, a single-phase inverter with less power converter is a good compromise for high efficiency. The control must make it possible to extract the maximum power from the photovoltaic modules, ensure good dynamic performance for active and reactive power injection, ensure power quality, and reject disturbances and parameter mismatch. Besides, the controllers of the grid and PV sides should be coordinated. In this study, a fast terminal sliding mode control combined with Direct Power Control is proposed. Thanks to the two-cascaded control loops, simulations and experimental results with a 1 kW test bench have proven the proposal’s effectiveness in terms of dynamic performances and robustness to irradiance variations. Comparison with deadbeat-Direct Power Control, predictive control, and power hysteresis control shows that our proposal leads to lower Total Harmonic Distortion (3,5%) for the electrical grid’s current and lower time response (one-tenth of half the grid cycle).
HAL-UPMC arrow_drop_down Control Engineering PracticeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conengprac.2020.104635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL-UPMC arrow_drop_down Control Engineering PracticeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conengprac.2020.104635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 FrancePublisher:IEEE Hammou, Abdelilah; Meng, Jianwen; Diallo, Demba; Petrone, Raffaele; Gualous, Hamid;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/phm585...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/phm58589.2023.00050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/phm585...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/phm58589.2023.00050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, United KingdomPublisher:MDPI AG Authors: Li, Xiaochuan; Mba, David; Diallo, Demba; Delpha, Claude;doi: 10.3390/en12040726
This study puts forward a novel diagnostic approach based on canonical variate residuals (CVR) to implement incipient fault diagnosis for dynamic process monitoring. The conventional canonical variate analysis (CVA) fault detection approach is extended to form a new monitoring index based on Hotelling’s T 2 , Q and a CVR-based monitoring index, T d . A CVR-based contribution plot approach is also proposed based on Q and T d statistics. Two performance metrics: (1) false alarm rate and (2) missed detection rate are used to assess the effectiveness of the proposed approach. The CVR diagnostic approach was validated on incipient faults in a continuous stirred tank reactor (CSTR) system and an operational centrifugal compressor.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/4/726/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2019Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12040726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/4/726/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2019Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12040726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Demba Diallo; Demba Diallo; Anne Migan-Dubois; Claude Delpha; Baojie Li;Abstract The rapid development of photovoltaic (PV) technology and the growing number and size of PV power plants require increasingly efficient and intelligent health monitoring strategies to ensure reliable operation and high energy availability. Among the various techniques, Artificial Neural Network (ANN) has exhibited the functional capacity to perform the identification and classification of PV faults. In the present review, a systematic study on the application of ANN and hybridized ANN models for PV fault detection and diagnosis (FDD) is conducted. For each application, the targeted PV faults, the detectable faults, the type and amount of data used, the model configuration and the FDD performance are extracted, and analyzed. The main trends, challenges and prospects for the application of ANN for PV FDD are extracted and presented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 194 citations 194 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, United StatesPublisher:Elsevier BV Li, Baojie; Hansen, Clifford; Chen, Xin; Diallo, Demba; Migan-Dubois, Anne; Delpha, Claude; Jain, Anubhav;To enable health monitoring and fault diagnosis of PV modules using current-voltage characteristics (I–V curves), it is generally necessary to correct the I–V curves measured under different environmental conditions to the standard condition. The most common correction methods are those from IEC 60891: 2021 standard. However, these methods can introduce significant errors when dealing with degraded PV modules due to the inability to account for changes in resistance. To address this, we propose an improved I–V curve procedure, denoted Pdynamic, which considers different types of degradation by dynamically deriving the correction coefficients from the measured I–V curves. To evaluate the performance, we simulate I–V curves across a wide range of irradiance and temperature for the healthy and degraded module, where the degradation involves increased series resistance, decreased shunt resistance, or both. The results reveal that Pdynamic can produce corrected I–V curves closer to the reference ones than Procedures 1, 2, and 4 of the IEC 60891:2021 standard. Moreover, Pdynamic exhibits resilience to both seasonal fluctuations and varying levels of degradation. These results highlight Pdynamic as a promising and robust I–V curve correction method, particularly for degraded PV modules. A Python-based open-source tool for this procedure is also available at https://github.com/DuraMAT/IVcorrection.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1ww3r377Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4597738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1ww3r377Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4597738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Authors: Li, Baojie; Migan-Dubois, Anne; Delpha, Claude; Diallo, Demba;Abstract Correction of the I-V curve permits the comparison of curves measured under different conditions for photovoltaic (PV) panels' health monitoring purpose. IEC 60891 has defined three standard procedures named 1, 2 and 3 for the correction. They were initially designed to correct the curves of healthy PV panels. However, their performance, when applied to I-V curves measured on faulty panels, is rarely discussed. This work evaluates these correction methods on I-V curves simulated under different environmental conditions and for five types of defects of varying severity. The results show that procedure 3 has a relatively better overall performance but is not suitable for rapid application in the field as it requires the determination of reference curves. It is found that procedures 1 and 2 could introduce distortion of the curve's shape, with a relative error of up to 13.8% and 6.4%, respectively. A misestimation of 9.1% for key parameters of the curve has been observed, when using procedure 2 for maximum power. Based on the performance analysis, a new correction method is proposed to fit the corrected voltage. It can reduce the curve's average correction error by 31.3% compared to the original single curve correction method. Challenges and directions for future work are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021 FrancePublisher:IEEE Veizaga, Maria; Bercu, Sophie; Delpha, Claude; Diallo, Demba; Bertin, Ludovic;Demand for power quality analysis in industrial networks has increased in recent years. Voltage sags are the most frequent and impactful disturbances, with especially high financial implications for industrial clients. Understanding the underlying causes behind voltage sags is a first step towards a mitigation solution. In this paper, we propose a voltage sag cause identification algorithm based on instantaneous symmetrical components and dynamic time warping applied to voltage and current measurements. Short-Time Fourier Transform and Fortescue transform are implemented in the pre-processing stage, obtaining a four-dimension time series signature. Then, a simple but effective multivariate time series classification approach is used. It is based on 1-Nearest Neighbor classifier and dependent Dynamic Time Warping as distance measure (1NN-DTW D ). The main advantages of the proposed method are the electrical interpretability of the signatures and the reduced size of the training data. A classification accuracy of 100% is reached with synthetic data, representing seven voltage sag sources. The method reaches a classification accuracy ratio higher than 98% with a reduced real dataset representing five event classes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/iecon4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iecon48115.2021.9589719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/iecon4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iecon48115.2021.9589719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Authors: Li, Baojie; Delpha, Claude; Migan-Dubois, Anne; Diallo, Demba;Abstract The current–voltage characteristics (I–V curves) of photovoltaic (PV) modules contain a lot of information about their health. In the literature, only partial information from the I–V curves is used for diagnosis. In this study, a methodology is developed to make full use of I–V curves for PV fault diagnosis. In the pre-processing step, the I–V curve is first corrected and resampled. Then fault features are extracted based on the direct use of the resampled vector of current or the transformation by Gramian angular difference field or recurrence plot. Six machine learning techniques, i.e., artificial neural network, support vector machine, decision tree, random forest, k-nearest neighbors, and naive Bayesian classifier are evaluated for the classification of the eight conditions (healthy and seven faulty conditions) of PV array. Special effort is paid to find out the best performance (accuracy and processing time) when using different input features combined with each of the classifier. Besides, the robustness to environmental noise and measurement errors is also addressed. It is found out that the best classifier achieves 100% classification accuracy with both simulation and field data. The dimension reduction of features, the robustness of classifiers to disturbance, and the impact of transformation are also analyzed.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 FrancePublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Benbouzid, Mohamed; Diallo, Demba; Zeraoulia, Mounir;This paper describes active fault-tolerant control systems for a high-performance induction-motor drive that propels an electrical vehicle (EV) or a hybrid one (HEV). The proposed systems adaptively reorganize themselves in the event of sensor loss or sensor recovery to sustain the best control performance, given the complement of remaining sensors. Moreover, the developed systems take into account the controller-transition smoothness, in terms of speed and torque transients. The two proposed fault-tolerant control strategies have been simulated on a 4-kW induction-motor drive, and speed and torque responses have been carried to evaluate the consistency and the performance of the proposed approaches. Simulation results, in terms of speed and torque responses, show the global effectiveness of the proposed approaches, particularly the one based on modern and intelligent control techniques in terms of speed and torque smoothness
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverUniversité de Bretagne Occidentale: HALArticle . 2007Full-Text: https://hal.science/hal-00524607Data sources: Bielefeld Academic Search Engine (BASE)Supélec (Ecole supérieure d'électricité): Publications scientifiques (HAL)Article . 2007Full-Text: https://hal.science/hal-00524607Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Vehicular TechnologyArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2006.889579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 152 citations 152 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverUniversité de Bretagne Occidentale: HALArticle . 2007Full-Text: https://hal.science/hal-00524607Data sources: Bielefeld Academic Search Engine (BASE)Supélec (Ecole supérieure d'électricité): Publications scientifiques (HAL)Article . 2007Full-Text: https://hal.science/hal-00524607Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Vehicular TechnologyArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2006.889579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Chuanyong Shao; Anne Migan-Dubois; Demba Diallo;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Authors: Elaheh Heydari; Elaheh Heydari; Demba Diallo; Ali Yazdian Varjani;Abstract Today, grid-connected photovoltaic systems have gained widespread penetration among renewable energy systems. For low power applications, a single-phase inverter with less power converter is a good compromise for high efficiency. The control must make it possible to extract the maximum power from the photovoltaic modules, ensure good dynamic performance for active and reactive power injection, ensure power quality, and reject disturbances and parameter mismatch. Besides, the controllers of the grid and PV sides should be coordinated. In this study, a fast terminal sliding mode control combined with Direct Power Control is proposed. Thanks to the two-cascaded control loops, simulations and experimental results with a 1 kW test bench have proven the proposal’s effectiveness in terms of dynamic performances and robustness to irradiance variations. Comparison with deadbeat-Direct Power Control, predictive control, and power hysteresis control shows that our proposal leads to lower Total Harmonic Distortion (3,5%) for the electrical grid’s current and lower time response (one-tenth of half the grid cycle).
HAL-UPMC arrow_drop_down Control Engineering PracticeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conengprac.2020.104635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL-UPMC arrow_drop_down Control Engineering PracticeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conengprac.2020.104635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 FrancePublisher:IEEE Hammou, Abdelilah; Meng, Jianwen; Diallo, Demba; Petrone, Raffaele; Gualous, Hamid;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/phm585...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/phm58589.2023.00050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/phm585...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/phm58589.2023.00050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, United KingdomPublisher:MDPI AG Authors: Li, Xiaochuan; Mba, David; Diallo, Demba; Delpha, Claude;doi: 10.3390/en12040726
This study puts forward a novel diagnostic approach based on canonical variate residuals (CVR) to implement incipient fault diagnosis for dynamic process monitoring. The conventional canonical variate analysis (CVA) fault detection approach is extended to form a new monitoring index based on Hotelling’s T 2 , Q and a CVR-based monitoring index, T d . A CVR-based contribution plot approach is also proposed based on Q and T d statistics. Two performance metrics: (1) false alarm rate and (2) missed detection rate are used to assess the effectiveness of the proposed approach. The CVR diagnostic approach was validated on incipient faults in a continuous stirred tank reactor (CSTR) system and an operational centrifugal compressor.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/4/726/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2019Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12040726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/4/726/pdfData sources: Multidisciplinary Digital Publishing InstituteDe Montfort University Open Research ArchiveArticle . 2019Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12040726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Demba Diallo; Demba Diallo; Anne Migan-Dubois; Claude Delpha; Baojie Li;Abstract The rapid development of photovoltaic (PV) technology and the growing number and size of PV power plants require increasingly efficient and intelligent health monitoring strategies to ensure reliable operation and high energy availability. Among the various techniques, Artificial Neural Network (ANN) has exhibited the functional capacity to perform the identification and classification of PV faults. In the present review, a systematic study on the application of ANN and hybridized ANN models for PV fault detection and diagnosis (FDD) is conducted. For each application, the targeted PV faults, the detectable faults, the type and amount of data used, the model configuration and the FDD performance are extracted, and analyzed. The main trends, challenges and prospects for the application of ANN for PV FDD are extracted and presented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 194 citations 194 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, United StatesPublisher:Elsevier BV Li, Baojie; Hansen, Clifford; Chen, Xin; Diallo, Demba; Migan-Dubois, Anne; Delpha, Claude; Jain, Anubhav;To enable health monitoring and fault diagnosis of PV modules using current-voltage characteristics (I–V curves), it is generally necessary to correct the I–V curves measured under different environmental conditions to the standard condition. The most common correction methods are those from IEC 60891: 2021 standard. However, these methods can introduce significant errors when dealing with degraded PV modules due to the inability to account for changes in resistance. To address this, we propose an improved I–V curve procedure, denoted Pdynamic, which considers different types of degradation by dynamically deriving the correction coefficients from the measured I–V curves. To evaluate the performance, we simulate I–V curves across a wide range of irradiance and temperature for the healthy and degraded module, where the degradation involves increased series resistance, decreased shunt resistance, or both. The results reveal that Pdynamic can produce corrected I–V curves closer to the reference ones than Procedures 1, 2, and 4 of the IEC 60891:2021 standard. Moreover, Pdynamic exhibits resilience to both seasonal fluctuations and varying levels of degradation. These results highlight Pdynamic as a promising and robust I–V curve correction method, particularly for degraded PV modules. A Python-based open-source tool for this procedure is also available at https://github.com/DuraMAT/IVcorrection.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1ww3r377Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4597738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/1ww3r377Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4597738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Authors: Li, Baojie; Migan-Dubois, Anne; Delpha, Claude; Diallo, Demba;Abstract Correction of the I-V curve permits the comparison of curves measured under different conditions for photovoltaic (PV) panels' health monitoring purpose. IEC 60891 has defined three standard procedures named 1, 2 and 3 for the correction. They were initially designed to correct the curves of healthy PV panels. However, their performance, when applied to I-V curves measured on faulty panels, is rarely discussed. This work evaluates these correction methods on I-V curves simulated under different environmental conditions and for five types of defects of varying severity. The results show that procedure 3 has a relatively better overall performance but is not suitable for rapid application in the field as it requires the determination of reference curves. It is found that procedures 1 and 2 could introduce distortion of the curve's shape, with a relative error of up to 13.8% and 6.4%, respectively. A misestimation of 9.1% for key parameters of the curve has been observed, when using procedure 2 for maximum power. Based on the performance analysis, a new correction method is proposed to fit the corrected voltage. It can reduce the curve's average correction error by 31.3% compared to the original single curve correction method. Challenges and directions for future work are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021 FrancePublisher:IEEE Veizaga, Maria; Bercu, Sophie; Delpha, Claude; Diallo, Demba; Bertin, Ludovic;Demand for power quality analysis in industrial networks has increased in recent years. Voltage sags are the most frequent and impactful disturbances, with especially high financial implications for industrial clients. Understanding the underlying causes behind voltage sags is a first step towards a mitigation solution. In this paper, we propose a voltage sag cause identification algorithm based on instantaneous symmetrical components and dynamic time warping applied to voltage and current measurements. Short-Time Fourier Transform and Fortescue transform are implemented in the pre-processing stage, obtaining a four-dimension time series signature. Then, a simple but effective multivariate time series classification approach is used. It is based on 1-Nearest Neighbor classifier and dependent Dynamic Time Warping as distance measure (1NN-DTW D ). The main advantages of the proposed method are the electrical interpretability of the signatures and the reduced size of the training data. A classification accuracy of 100% is reached with synthetic data, representing seven voltage sag sources. The method reaches a classification accuracy ratio higher than 98% with a reduced real dataset representing five event classes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/iecon4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iecon48115.2021.9589719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/iecon4...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iecon48115.2021.9589719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Authors: Li, Baojie; Delpha, Claude; Migan-Dubois, Anne; Diallo, Demba;Abstract The current–voltage characteristics (I–V curves) of photovoltaic (PV) modules contain a lot of information about their health. In the literature, only partial information from the I–V curves is used for diagnosis. In this study, a methodology is developed to make full use of I–V curves for PV fault diagnosis. In the pre-processing step, the I–V curve is first corrected and resampled. Then fault features are extracted based on the direct use of the resampled vector of current or the transformation by Gramian angular difference field or recurrence plot. Six machine learning techniques, i.e., artificial neural network, support vector machine, decision tree, random forest, k-nearest neighbors, and naive Bayesian classifier are evaluated for the classification of the eight conditions (healthy and seven faulty conditions) of PV array. Special effort is paid to find out the best performance (accuracy and processing time) when using different input features combined with each of the classifier. Besides, the robustness to environmental noise and measurement errors is also addressed. It is found out that the best classifier achieves 100% classification accuracy with both simulation and field data. The dimension reduction of features, the robustness of classifiers to disturbance, and the impact of transformation are also analyzed.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu