- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Germany, DenmarkPublisher:AIP Publishing Funded by:EC | SEEWHI, DFG, DFG | CUI: Advanced Imaging of ...EC| SEEWHI ,DFG ,DFG| CUI: Advanced Imaging of MatterKhalili, Khadijeh; Inhester, Ludger; Arnold, Caroline; Gertsen, Anders S.; Andreasen, Jens Wenzel; Santra, Robin;To date, alternating co-polymers based on electron-rich and electron-poor units are the most attractive materials to control functionality of organic semiconductor layers in which ultrafast excited-state processes play a key role. We present a computational study of the photoinduced excited-state dynamics of the 4-(2-thienyl)-2,1,3-benzothiadiazole (BT-1T) molecule, which is a common building block in the backbone of $\pi$-conjugated polymers used for organic electronics. In contrast to homo-polymer materials, such as oligothiophene, BT-1T has two non-identical units, namely, thiophene and benzothiadiazole, making it attractive for intramolecular charge transfer studies. To gain a thorough understanding of the coupling of excited-state dynamics with nuclear motion, we consider a scenario based on femtosecond time-resolved x-ray absorption spectroscopy using an x-ray free-electron laser in combination with a synchronized ultraviolet femtosecond laser. Using Tully's fewest switches surface hopping approach in combination with excited-state calculations at the level of configuration interaction singles, we calculate the gas-phase x-ray absorption spectrum at the carbon and nitrogen $K$ edges as a function of time after excitation to the lowest electronically excited state. The results of our time-resolved calculations exhibit the charge transfer driven by non-Born-Oppenheimer physics from the benzothiadiazole to thiophene units during relaxation to the ground state. Furthermore, our $ab$ $initio$ molecular dynamics simulations indicate that the excited-state relaxation processes involve bond elongation in the benzothiadiazole unit as well as thiophene ring puckering at a time scale of 100 fs. We show that these dynamical trends can be identified from the time-dependent x-ray absorption spectrum. Structural dynamics 7(4), 044101 - (2020). doi:10.1063/4.0000016 Published by AIP Publishing LLC, Melville, NY
Structural Dynamics arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/4.0000016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Structural Dynamics arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/4.0000016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 DenmarkPublisher:Wiley Funded by:EC | LASERLAB-EUROPEEC| LASERLAB-EUROPEAnders B. Skov; Nicolai Ree; Jens Uhlig; Tõnu Pullerits; Mogens Brøndsted Nielsen; Anders S. Gertsen; Anders S. Gertsen; Jonas Sandby Lissau; Pavel Chábera; Luigi Nucci; Luigi Nucci; Thorsten Hansen; Theis I. Sølling; Theis I. Sølling; Kurt V. Mikkelsen;AbstractThe front cover artwork is provided by the Hansen and Mikkelsen groups from the University of Copenhagen. The image shows how excited state aromaticity affects the photochemistry of dihydroazulene (DHA). Inducing aromaticity enhances an excited state barrier, so DHA can no longer reach the photoproduct. Read the full text of the Article at 10.1002/cptc.201900088.
Copenhagen Universit... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)ChemPhotoChemArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemPhotoChemArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cptc.201900182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Copenhagen Universit... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)ChemPhotoChemArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemPhotoChemArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cptc.201900182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, DenmarkPublisher:Wiley Anders Kadziola; Søren Lindbæk Broman; Anders B. Skov; Martina Cacciarini; Martina Cacciarini; Anders S. Gertsen; Martyn Jevric; Jonas Elm; Mogens Brøndsted Nielsen; Kurt V. Mikkelsen;AbstractPhotochemical conversion of molecules into high‐energy isomers that, after a stimulus, return to the original isomer presents a closed‐cycle of light‐harvesting, energy storage, and release. One challenge is to achieve a sufficiently high energy storage capacity. Here, we present efforts to tune the dihydroazulene/vinylheptafulvene (DHA/VHF) couple through loss/gain of aromaticity. Two derivatives were prepared, one with aromatic stabilization of DHA and the second of VHF. The consequences for the switching properties were elucidated. For the first type, sigmatropic rearrangements of DHA occurred upon irradiation. Formation of a VHF complex could be induced by a Lewis acid, but addition of H2O resulted in immediate regeneration of DHA. For the second type, the VHF was too stable to convert into DHA. Calculations support the results and provide new targets. We predict that by removing one of the two CN groups at C‐1 of the aromatic DHA, the heat storage capacity will be further increased, as will the life‐time of the VHF. Calculations also reveal that a CN group at the fulvene ring retards the back‐reaction, and we show synthetically that it can be introduced regioselectively.
Flore (Florence Rese... arrow_drop_down Chemistry - A European JournalArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.201601190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Chemistry - A European JournalArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.201601190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:American Physical Society (APS) Funded by:EC | SEEWHIEC| SEEWHIAuthors: Gertsen, Anders S.; Sørensen, Michael Korning; Andreasen, Jens W.;We present a procedure for simulating solution deposition of organic thin-films on explicitly modeled substrates via solvent evaporation simulations in a molecular dynamics framework. Additionally, we have developed force fields for the family of IDTBR nonfullerene acceptors, which have been widely employed in the literature as $n$-type materials in several types of organic semiconductor devices, and we analyzed their structure-property relationships using a combination of grazing incidence x-ray scattering measurements, atomistic molecular dynamics simulations, and quantum chemical calculations. We find that thermal fluctuations can have a significant impact on calculated electron transfer integrals, and that the $\ensuremath{\pi}$-stacking interactions of the electron withdrawing benzothiadiazole building blocks are key to high electron coupling in amorphous thin films of $n$-type materials.
Physical Review Mate... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyPhysical Review MaterialsArticle . 2020 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: CrossrefPhysical Review MaterialsArticleLicense: APS Licenses for Journal Article Re-useData sources: SygmaPhysical Review MaterialsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevmaterials.4.075405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Physical Review Mate... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyPhysical Review MaterialsArticle . 2020 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: CrossrefPhysical Review MaterialsArticleLicense: APS Licenses for Journal Article Re-useData sources: SygmaPhysical Review MaterialsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevmaterials.4.075405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Advanced Device Concepts ..., EC | SEEWHI, EC | CITYSOLAR +6 projectsUKRI| Advanced Device Concepts for Next-Generation Photovoltaics ,EC| SEEWHI ,EC| CITYSOLAR ,EC| CAPaCITy ,UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,EC| BOOSTER ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,EC| RoLA-FLEX ,UKRI| Flexible Hybrid Thermoelectric MaterialsJack F. Coker; Stefania Moro; Anders S. Gertsen; Xingyuan Shi; Drew Pearce; Martin P. van der Schelling; Yucheng Xu; Weimin Zhang; Jens W. Andreasen; Chad R. Snyder; Lee J. Richter; Matthew J. Bird; Iain McCulloch; Giovanni Costantini; Jarvist M. Frost; Jenny Nelson;The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2403879121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2403879121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 DenmarkPublisher:AIP Publishing Funded by:EC | SEEWHIEC| SEEWHIChristian Rein; Jens Uhlig; David Carrasco-Busturia; Khadijeh Khalili; Anders S. Gertsen; Asbjørn Moltke; Xiaoyi Zhang; Tetsuo Katayama; Juan Maria García Lastra; Martin Meedom Nielsen; Shin-Ichi Adachi; Kristoffer Haldrup; Jens Wenzel Andreasen;Ultrafast, light-induced dynamics in copper–zinc–tin–sulfide (CZTS) photovoltaic nanoparticles are investigated through a combination of optical and x-ray transient absorption spectroscopy. Laser-pump, x-ray-probe spectroscopy on a colloidal CZTS nanoparticle ink yields element-specificity, which reveals a rapid photo-induced shift of electron density away from Cu-sites, affecting the molecular orbital occupation and structure of CZTS. We observe the formation of a stable charge-separated and thermally excited structure, which persists for nanoseconds and involves an increased charge density at the Zn sites. Combined with density functional theory calculations, the results provide new insight into the structural and electronic dynamics of CZTS absorbers for solar cells.
Structural Dynamics arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/4.0000055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Structural Dynamics arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/4.0000055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 DenmarkPublisher:IOP Publishing Funded by:EC | SEEWHIEC| SEEWHIAuthors: Anders S Gertsen; Marcial Fernández Castro; Roar R Søndergaard; Jens W Andreasen;Abstract Organic solar cells have recently experienced a substantial leap in power conversion efficiency, in part driven by formulations with new non-fullerene acceptors. This has brought the technology past the psychologically important mark of 15% efficiency for unscaled laboratory devices, and the results are stimulating another burst of research activity. Whether this will propel the technology into a viable commercial contender has yet to be determined, but to realize the potential of organic solar cells for utility scale application, fabrication using scalable processing techniques has to be demonstrated—otherwise, the passing of the 15% mark will eventually leave no more lasting impact than what the passing of the 10% mark did. Thus, addressing the scaling lag between the 15% cell efficiencies of lab-scale devices on rigid glass substrates fabricated using non-scalable techniques and the 7% efficiencies of scalably fabricated devices on flexible substrates is key. Here, we discuss the concept of scalability and give an account of the literature on non-fullerene acceptor devices fabricated with scalable methods and materials. On the basis of this, we identify three crucial focus points for overcoming the lab-to-fab challenge: (i) dual temperature control, i.e. simultaneous control of the ink and substrate temperatures during deposition, (ii) systematic in situ morphology studies of active layer inks with new, green solvent formulations during continuous deposition, and (iii) development of protocols for continuous solution processing of smooth, transparent interfacial layers with efficient charge transfer to the active layer. Combining these efforts and in general accompanying such studies with stability analyses and fabrication of large-area, scalably processed devices are believed to accelerate the relevance of organic solar cells for large-scale energy supply.
Flexible and Printed... arrow_drop_down Flexible and Printed ElectronicsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyFlexible and Printed ElectronicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2058-8585/ab5f57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flexible and Printed... arrow_drop_down Flexible and Printed ElectronicsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyFlexible and Printed ElectronicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2058-8585/ab5f57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 Germany, DenmarkPublisher:Wiley Funded by:EC | SEEWHIEC| SEEWHIAuthors: Michael Korning Sørensen; Anders Skovbo Gertsen; Rocco Peter Fornari; Binbin Zhou; +11 AuthorsMichael Korning Sørensen; Anders Skovbo Gertsen; Rocco Peter Fornari; Binbin Zhou; Xiaotong Zhang; Peter Uhd Jepsen; Edoardo Stanzani; Shinhee Yun; Marcial Fernández Castro; Matthias Schwartzkopf; Alexandros Koutsioubas; Piotr de Silva; Moises Espindola‐Rodriguez; Luise Theil Kuhn; Jens Wenzel Andreasen;AbstractA method is presented to manipulate the final morphology of roll‐to‐roll slot‐die coated poly(3‐hexylthiophene) (P3HT) by optically exciting the p‐type polymer in solution while coating. These results provide a comprehensive picture of the entire knowledge chain, from demonstrating how to apply the authors’ method to a fundamental understanding of the changes in morphology and physical properties induced by exciting P3HT while coating. By combining results from density functional theory and molecular dynamics simulations with a variety of X‐ray experiments, absorption spectroscopy, and THz spectroscopy, the relationship between morphology and physical properties of the thin film is demonstrated. Specifically, in P3HT films excited with light during deposition, changes in crystallinity and texture with more face‐on orientation and increased out‐of‐plane charge mobility are observed.
Advanced Functional ... arrow_drop_down Advanced Functional MaterialsArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advanced Functional ... arrow_drop_down Advanced Functional MaterialsArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Germany, DenmarkPublisher:AIP Publishing Funded by:EC | SEEWHI, DFG, DFG | CUI: Advanced Imaging of ...EC| SEEWHI ,DFG ,DFG| CUI: Advanced Imaging of MatterKhalili, Khadijeh; Inhester, Ludger; Arnold, Caroline; Gertsen, Anders S.; Andreasen, Jens Wenzel; Santra, Robin;To date, alternating co-polymers based on electron-rich and electron-poor units are the most attractive materials to control functionality of organic semiconductor layers in which ultrafast excited-state processes play a key role. We present a computational study of the photoinduced excited-state dynamics of the 4-(2-thienyl)-2,1,3-benzothiadiazole (BT-1T) molecule, which is a common building block in the backbone of $\pi$-conjugated polymers used for organic electronics. In contrast to homo-polymer materials, such as oligothiophene, BT-1T has two non-identical units, namely, thiophene and benzothiadiazole, making it attractive for intramolecular charge transfer studies. To gain a thorough understanding of the coupling of excited-state dynamics with nuclear motion, we consider a scenario based on femtosecond time-resolved x-ray absorption spectroscopy using an x-ray free-electron laser in combination with a synchronized ultraviolet femtosecond laser. Using Tully's fewest switches surface hopping approach in combination with excited-state calculations at the level of configuration interaction singles, we calculate the gas-phase x-ray absorption spectrum at the carbon and nitrogen $K$ edges as a function of time after excitation to the lowest electronically excited state. The results of our time-resolved calculations exhibit the charge transfer driven by non-Born-Oppenheimer physics from the benzothiadiazole to thiophene units during relaxation to the ground state. Furthermore, our $ab$ $initio$ molecular dynamics simulations indicate that the excited-state relaxation processes involve bond elongation in the benzothiadiazole unit as well as thiophene ring puckering at a time scale of 100 fs. We show that these dynamical trends can be identified from the time-dependent x-ray absorption spectrum. Structural dynamics 7(4), 044101 - (2020). doi:10.1063/4.0000016 Published by AIP Publishing LLC, Melville, NY
Structural Dynamics arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/4.0000016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Structural Dynamics arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/4.0000016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 DenmarkPublisher:Wiley Funded by:EC | LASERLAB-EUROPEEC| LASERLAB-EUROPEAnders B. Skov; Nicolai Ree; Jens Uhlig; Tõnu Pullerits; Mogens Brøndsted Nielsen; Anders S. Gertsen; Anders S. Gertsen; Jonas Sandby Lissau; Pavel Chábera; Luigi Nucci; Luigi Nucci; Thorsten Hansen; Theis I. Sølling; Theis I. Sølling; Kurt V. Mikkelsen;AbstractThe front cover artwork is provided by the Hansen and Mikkelsen groups from the University of Copenhagen. The image shows how excited state aromaticity affects the photochemistry of dihydroazulene (DHA). Inducing aromaticity enhances an excited state barrier, so DHA can no longer reach the photoproduct. Read the full text of the Article at 10.1002/cptc.201900088.
Copenhagen Universit... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)ChemPhotoChemArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemPhotoChemArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cptc.201900182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Copenhagen Universit... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)ChemPhotoChemArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemPhotoChemArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cptc.201900182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, DenmarkPublisher:Wiley Anders Kadziola; Søren Lindbæk Broman; Anders B. Skov; Martina Cacciarini; Martina Cacciarini; Anders S. Gertsen; Martyn Jevric; Jonas Elm; Mogens Brøndsted Nielsen; Kurt V. Mikkelsen;AbstractPhotochemical conversion of molecules into high‐energy isomers that, after a stimulus, return to the original isomer presents a closed‐cycle of light‐harvesting, energy storage, and release. One challenge is to achieve a sufficiently high energy storage capacity. Here, we present efforts to tune the dihydroazulene/vinylheptafulvene (DHA/VHF) couple through loss/gain of aromaticity. Two derivatives were prepared, one with aromatic stabilization of DHA and the second of VHF. The consequences for the switching properties were elucidated. For the first type, sigmatropic rearrangements of DHA occurred upon irradiation. Formation of a VHF complex could be induced by a Lewis acid, but addition of H2O resulted in immediate regeneration of DHA. For the second type, the VHF was too stable to convert into DHA. Calculations support the results and provide new targets. We predict that by removing one of the two CN groups at C‐1 of the aromatic DHA, the heat storage capacity will be further increased, as will the life‐time of the VHF. Calculations also reveal that a CN group at the fulvene ring retards the back‐reaction, and we show synthetically that it can be introduced regioselectively.
Flore (Florence Rese... arrow_drop_down Chemistry - A European JournalArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.201601190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Chemistry - A European JournalArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.201601190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:American Physical Society (APS) Funded by:EC | SEEWHIEC| SEEWHIAuthors: Gertsen, Anders S.; Sørensen, Michael Korning; Andreasen, Jens W.;We present a procedure for simulating solution deposition of organic thin-films on explicitly modeled substrates via solvent evaporation simulations in a molecular dynamics framework. Additionally, we have developed force fields for the family of IDTBR nonfullerene acceptors, which have been widely employed in the literature as $n$-type materials in several types of organic semiconductor devices, and we analyzed their structure-property relationships using a combination of grazing incidence x-ray scattering measurements, atomistic molecular dynamics simulations, and quantum chemical calculations. We find that thermal fluctuations can have a significant impact on calculated electron transfer integrals, and that the $\ensuremath{\pi}$-stacking interactions of the electron withdrawing benzothiadiazole building blocks are key to high electron coupling in amorphous thin films of $n$-type materials.
Physical Review Mate... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyPhysical Review MaterialsArticle . 2020 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: CrossrefPhysical Review MaterialsArticleLicense: APS Licenses for Journal Article Re-useData sources: SygmaPhysical Review MaterialsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevmaterials.4.075405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Physical Review Mate... arrow_drop_down Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyPhysical Review MaterialsArticle . 2020 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: CrossrefPhysical Review MaterialsArticleLicense: APS Licenses for Journal Article Re-useData sources: SygmaPhysical Review MaterialsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevmaterials.4.075405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Advanced Device Concepts ..., EC | SEEWHI, EC | CITYSOLAR +6 projectsUKRI| Advanced Device Concepts for Next-Generation Photovoltaics ,EC| SEEWHI ,EC| CITYSOLAR ,EC| CAPaCITy ,UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,EC| BOOSTER ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,EC| RoLA-FLEX ,UKRI| Flexible Hybrid Thermoelectric MaterialsJack F. Coker; Stefania Moro; Anders S. Gertsen; Xingyuan Shi; Drew Pearce; Martin P. van der Schelling; Yucheng Xu; Weimin Zhang; Jens W. Andreasen; Chad R. Snyder; Lee J. Richter; Matthew J. Bird; Iain McCulloch; Giovanni Costantini; Jarvist M. Frost; Jenny Nelson;The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2403879121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2403879121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 DenmarkPublisher:AIP Publishing Funded by:EC | SEEWHIEC| SEEWHIChristian Rein; Jens Uhlig; David Carrasco-Busturia; Khadijeh Khalili; Anders S. Gertsen; Asbjørn Moltke; Xiaoyi Zhang; Tetsuo Katayama; Juan Maria García Lastra; Martin Meedom Nielsen; Shin-Ichi Adachi; Kristoffer Haldrup; Jens Wenzel Andreasen;Ultrafast, light-induced dynamics in copper–zinc–tin–sulfide (CZTS) photovoltaic nanoparticles are investigated through a combination of optical and x-ray transient absorption spectroscopy. Laser-pump, x-ray-probe spectroscopy on a colloidal CZTS nanoparticle ink yields element-specificity, which reveals a rapid photo-induced shift of electron density away from Cu-sites, affecting the molecular orbital occupation and structure of CZTS. We observe the formation of a stable charge-separated and thermally excited structure, which persists for nanoseconds and involves an increased charge density at the Zn sites. Combined with density functional theory calculations, the results provide new insight into the structural and electronic dynamics of CZTS absorbers for solar cells.
Structural Dynamics arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/4.0000055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Structural Dynamics arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/4.0000055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 DenmarkPublisher:IOP Publishing Funded by:EC | SEEWHIEC| SEEWHIAuthors: Anders S Gertsen; Marcial Fernández Castro; Roar R Søndergaard; Jens W Andreasen;Abstract Organic solar cells have recently experienced a substantial leap in power conversion efficiency, in part driven by formulations with new non-fullerene acceptors. This has brought the technology past the psychologically important mark of 15% efficiency for unscaled laboratory devices, and the results are stimulating another burst of research activity. Whether this will propel the technology into a viable commercial contender has yet to be determined, but to realize the potential of organic solar cells for utility scale application, fabrication using scalable processing techniques has to be demonstrated—otherwise, the passing of the 15% mark will eventually leave no more lasting impact than what the passing of the 10% mark did. Thus, addressing the scaling lag between the 15% cell efficiencies of lab-scale devices on rigid glass substrates fabricated using non-scalable techniques and the 7% efficiencies of scalably fabricated devices on flexible substrates is key. Here, we discuss the concept of scalability and give an account of the literature on non-fullerene acceptor devices fabricated with scalable methods and materials. On the basis of this, we identify three crucial focus points for overcoming the lab-to-fab challenge: (i) dual temperature control, i.e. simultaneous control of the ink and substrate temperatures during deposition, (ii) systematic in situ morphology studies of active layer inks with new, green solvent formulations during continuous deposition, and (iii) development of protocols for continuous solution processing of smooth, transparent interfacial layers with efficient charge transfer to the active layer. Combining these efforts and in general accompanying such studies with stability analyses and fabrication of large-area, scalably processed devices are believed to accelerate the relevance of organic solar cells for large-scale energy supply.
Flexible and Printed... arrow_drop_down Flexible and Printed ElectronicsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyFlexible and Printed ElectronicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2058-8585/ab5f57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flexible and Printed... arrow_drop_down Flexible and Printed ElectronicsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyFlexible and Printed ElectronicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2058-8585/ab5f57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 Germany, DenmarkPublisher:Wiley Funded by:EC | SEEWHIEC| SEEWHIAuthors: Michael Korning Sørensen; Anders Skovbo Gertsen; Rocco Peter Fornari; Binbin Zhou; +11 AuthorsMichael Korning Sørensen; Anders Skovbo Gertsen; Rocco Peter Fornari; Binbin Zhou; Xiaotong Zhang; Peter Uhd Jepsen; Edoardo Stanzani; Shinhee Yun; Marcial Fernández Castro; Matthias Schwartzkopf; Alexandros Koutsioubas; Piotr de Silva; Moises Espindola‐Rodriguez; Luise Theil Kuhn; Jens Wenzel Andreasen;AbstractA method is presented to manipulate the final morphology of roll‐to‐roll slot‐die coated poly(3‐hexylthiophene) (P3HT) by optically exciting the p‐type polymer in solution while coating. These results provide a comprehensive picture of the entire knowledge chain, from demonstrating how to apply the authors’ method to a fundamental understanding of the changes in morphology and physical properties induced by exciting P3HT while coating. By combining results from density functional theory and molecular dynamics simulations with a variety of X‐ray experiments, absorption spectroscopy, and THz spectroscopy, the relationship between morphology and physical properties of the thin film is demonstrated. Specifically, in P3HT films excited with light during deposition, changes in crystallinity and texture with more face‐on orientation and increased out‐of‐plane charge mobility are observed.
Advanced Functional ... arrow_drop_down Advanced Functional MaterialsArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advanced Functional ... arrow_drop_down Advanced Functional MaterialsArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu