- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Moran Wang; Qinjun Kang; Ning Pan;The effective thermal conductivity enhancement of carbon fiber composites is investigated in this contribution using a three-dimensional numerical method. First a more realistic three-dimensional distribution of fibers dispersed in a matrix phase is reproduced by a developed random generation-growth method to eliminate the overrated inter-fiber contacts by the two-dimensional simulations. The energy transport governing equations are then solved through the three-dimensional structures using a high-efficiency lattice Boltzmann scheme. The resultant predictions agree well with the available experimental data. Compared with the existing theoretical models, the present method does not depend upon empirical parameters which have to be determined case by case, so that it is useful for design and optimization for new materials, beyond prediction and analysis just for existing composites.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2008.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu182 citations 182 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2008.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Moran Wang; Qinjun Kang; Ning Pan;The effective thermal conductivity enhancement of carbon fiber composites is investigated in this contribution using a three-dimensional numerical method. First a more realistic three-dimensional distribution of fibers dispersed in a matrix phase is reproduced by a developed random generation-growth method to eliminate the overrated inter-fiber contacts by the two-dimensional simulations. The energy transport governing equations are then solved through the three-dimensional structures using a high-efficiency lattice Boltzmann scheme. The resultant predictions agree well with the available experimental data. Compared with the existing theoretical models, the present method does not depend upon empirical parameters which have to be determined case by case, so that it is useful for design and optimization for new materials, beyond prediction and analysis just for existing composites.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2008.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu182 citations 182 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2008.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2024Publisher:Office of Scientific and Technical Information (OSTI) Javier Santos; Agnese Marcato; Qinjun Kang; Mohamed Mehana; Daniel O'Malley; Hari Viswanathan; Nicholas Lubbers;doi: 10.2172/2377298
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/2377298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/2377298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2024Publisher:Office of Scientific and Technical Information (OSTI) Javier Santos; Agnese Marcato; Qinjun Kang; Mohamed Mehana; Daniel O'Malley; Hari Viswanathan; Nicholas Lubbers;doi: 10.2172/2377298
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/2377298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/2377298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohamed Mehana; Fangxuan Chen; Mashhad Fahes; Qinjun Kang; Hari Viswanathan;doi: 10.3390/en15228557
Field operations report that at least half of the fracturing fluid used in shale reservoirs is trapped. These trapped fluids can trigger various geochemical interactions. However, the impact of these interactions on well performance is still elusive. We modeled a hydraulic fracture stage where we simulated the initial conditions by injecting the fracturing fluid and shutting the well to allow the fluids to soak into the formation. Our results suggest a positive correlation between the dissolution and precipitation rates and the carbonate content of the rock. In addition, we observed that gas and load recovery are overestimated when geochemical interactions are overlooked. We also observed promising results for sea water as a good alternative fracturing fluid. Moreover, we observed better performance for cases with lower-saline connate water. The reactions of carbonates outweigh the reactions of clays in most cases. Sensitivity analysis suggests that the concentration of SO4, K and Na ions in the fracturing fluid, and the illite and calcite mineral content, along with the reservoir temperature, are the key factors affecting well performance. In conclusion, geochemical interactions should be considered for properly modeling the fate of the fracturing fluids and their impact on well performance.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohamed Mehana; Fangxuan Chen; Mashhad Fahes; Qinjun Kang; Hari Viswanathan;doi: 10.3390/en15228557
Field operations report that at least half of the fracturing fluid used in shale reservoirs is trapped. These trapped fluids can trigger various geochemical interactions. However, the impact of these interactions on well performance is still elusive. We modeled a hydraulic fracture stage where we simulated the initial conditions by injecting the fracturing fluid and shutting the well to allow the fluids to soak into the formation. Our results suggest a positive correlation between the dissolution and precipitation rates and the carbonate content of the rock. In addition, we observed that gas and load recovery are overestimated when geochemical interactions are overlooked. We also observed promising results for sea water as a good alternative fracturing fluid. Moreover, we observed better performance for cases with lower-saline connate water. The reactions of carbonates outweigh the reactions of clays in most cases. Sensitivity analysis suggests that the concentration of SO4, K and Na ions in the fracturing fluid, and the illite and calcite mineral content, along with the reservoir temperature, are the key factors affecting well performance. In conclusion, geochemical interactions should be considered for properly modeling the fate of the fracturing fluids and their impact on well performance.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2016Embargo end date: 01 Jan 2016Publisher:Elsevier BV Junjian Wang; Junjian Wang; Qinjun Kang; Li Chen; Li Chen; Sheik S. Rahman;Gas flow in shale is associated with both organic matter (OM) and inorganic matter (IOM) which contain nanopores ranging in size from a few to hundreds of nanometers. In addition to the noncontinuum effect which leads to an apparent permeability of gas higher than the intrinsic permeability, the surface diffusion of adsorbed gas in organic pores also can influence the apparent permeability through its own transport mechanism. In this study, a generalized lattice Boltzmann model (GLBM) is employed for gas flow through the reconstructed shale matrix consisting of OM and IOM. The Expectation-Maximization (EM) algorithm is used to assign the pore size distribution to each component, and the dusty gas model (DGM) and generalized Maxwell-Stefan model (GMS) are adopted to calculate the apparent permeability accounting for multiple transport mechanisms including viscous flow, Knudsen diffusion and surface diffusion. Effects of pore radius and pressure on permeability of both IOM and OM as well as effects of Langmuir parameters on OM are investigated. Moreover, the effect of total organic content and distribution on the apparent permeability of the reconstructed shale matrix is also studied. It is found that the distribution of OM and IOM has a negligible influence on apparent permeability, whereas the total organic content and the surface diffusion play a significant role in gas transport in shale matrix. 19 pages, 17 Figures
Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2016Embargo end date: 01 Jan 2016Publisher:Elsevier BV Junjian Wang; Junjian Wang; Qinjun Kang; Li Chen; Li Chen; Sheik S. Rahman;Gas flow in shale is associated with both organic matter (OM) and inorganic matter (IOM) which contain nanopores ranging in size from a few to hundreds of nanometers. In addition to the noncontinuum effect which leads to an apparent permeability of gas higher than the intrinsic permeability, the surface diffusion of adsorbed gas in organic pores also can influence the apparent permeability through its own transport mechanism. In this study, a generalized lattice Boltzmann model (GLBM) is employed for gas flow through the reconstructed shale matrix consisting of OM and IOM. The Expectation-Maximization (EM) algorithm is used to assign the pore size distribution to each component, and the dusty gas model (DGM) and generalized Maxwell-Stefan model (GMS) are adopted to calculate the apparent permeability accounting for multiple transport mechanisms including viscous flow, Knudsen diffusion and surface diffusion. Effects of pore radius and pressure on permeability of both IOM and OM as well as effects of Langmuir parameters on OM are investigated. Moreover, the effect of total organic content and distribution on the apparent permeability of the reconstructed shale matrix is also studied. It is found that the distribution of OM and IOM has a negligible influence on apparent permeability, whereas the total organic content and the surface diffusion play a significant role in gas transport in shale matrix. 19 pages, 17 Figures
Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Wen-Quan Tao; Li Chen; Qinjun Kang; Ruiyuan Zhang; Pu He; Ya-Ling He;Abstract Reducing Platinum amount in proton exchange membrane fuel cell (PEMFC) is one of the main tasks to achieve low cost PEMFC. Recently, significant performance loss has been found under low Pt loading due to local mass transport limitations. In this study, pore-scale simulations are conducted to study oxygen transport within four-constituent microscopic structures of catalyst layer including a carbon particle, ionomer, Pt particles, and primary pores inside the carbon particle. Multiphase physicochemical processes are considered, including oxygen dissolution at the pore/ionomer interface, oxygen diffusion within the ionomer film and inside the primary pores, and reactions at the Pt interface. Local transport resistance is calculated based on the pore-scale concentration field predicted. The simulation results are compared with existing experimental results and 1D models. Simulation results show that dissolution resistance at the secondary pore/ionomer interface is about 10–50 times higher than that inside the ionomoer. Local transport resistance increases as Pt loading decreases, especially under Pt loading of 0.1 mg cm−2. Besides, local transport resistance can be reduced by depositing more Pt outside the carbon particle, alleviating agglomeration and/or decreasing the ionomer thickness. The simulation results indicate that local transport characteristics should be considered when developing 1D agglomeration model of catalyst layer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Wen-Quan Tao; Li Chen; Qinjun Kang; Ruiyuan Zhang; Pu He; Ya-Ling He;Abstract Reducing Platinum amount in proton exchange membrane fuel cell (PEMFC) is one of the main tasks to achieve low cost PEMFC. Recently, significant performance loss has been found under low Pt loading due to local mass transport limitations. In this study, pore-scale simulations are conducted to study oxygen transport within four-constituent microscopic structures of catalyst layer including a carbon particle, ionomer, Pt particles, and primary pores inside the carbon particle. Multiphase physicochemical processes are considered, including oxygen dissolution at the pore/ionomer interface, oxygen diffusion within the ionomer film and inside the primary pores, and reactions at the Pt interface. Local transport resistance is calculated based on the pore-scale concentration field predicted. The simulation results are compared with existing experimental results and 1D models. Simulation results show that dissolution resistance at the secondary pore/ionomer interface is about 10–50 times higher than that inside the ionomoer. Local transport resistance increases as Pt loading decreases, especially under Pt loading of 0.1 mg cm−2. Besides, local transport resistance can be reduced by depositing more Pt outside the carbon particle, alleviating agglomeration and/or decreasing the ionomer thickness. The simulation results indicate that local transport characteristics should be considered when developing 1D agglomeration model of catalyst layer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Hari S. Viswanathan; Robert P. Currier; Jeffrey D. Hyman; Qinjun Kang; Satish Karra; J. William Carey; Joaquin Jimenez-Martinez; Mark L. Porter; Richard S. Middleton;Abstract Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO2 as a working fluid for shale gas production. We theorize and outline potential advantages of CO2 including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO2. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO2 proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.
Applied Energy arrow_drop_down Applied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 701 citations 701 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Applied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Hari S. Viswanathan; Robert P. Currier; Jeffrey D. Hyman; Qinjun Kang; Satish Karra; J. William Carey; Joaquin Jimenez-Martinez; Mark L. Porter; Richard S. Middleton;Abstract Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO2 as a working fluid for shale gas production. We theorize and outline potential advantages of CO2 including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO2. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO2 proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.
Applied Energy arrow_drop_down Applied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 701 citations 701 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Applied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Wen-Quan Tao; Li Chen; Qinjun Kang;Abstract Porous structures of agglomerates in cathode catalyst layers (CLs) of proton exchange membrane fuel cells are reconstructed, in which all the four phases are resolved including Platinum, carbon, ionomer and pore. A pore-scale reactive transport model based on the lattice Boltzmann method is developed, in which oxygen dissolution reaction at pore-ionomer interface, oxygen diffusion inside ionomer, and electrochemical reaction at ionomer-Pt interface are considered. Emphasis is put on structural parameters, especially Pt/C mass ratio, on the reactive transport process and the volumetric reaction rate (or current density). Pore-scale results show that while under high Pt loading oxygen is depleted quite close to the surface of the spherical agglomerate, it has to penetrate deep into the porous agglomerate before it is completely consumed under low Pt loading which is not captured by classical agglomerate model based on homogeneous mixture assumption. Pore-scale results also found that effects of transport inside the agglomerate decreases as reaction rate, porosity or ionomer thickness increases. Finally, local transport resistance inside the agglomerate is evaluated, and it increases as the agglomerate size increases or the dissolution reaction rate decreases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2019.03.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2019.03.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Wen-Quan Tao; Li Chen; Qinjun Kang;Abstract Porous structures of agglomerates in cathode catalyst layers (CLs) of proton exchange membrane fuel cells are reconstructed, in which all the four phases are resolved including Platinum, carbon, ionomer and pore. A pore-scale reactive transport model based on the lattice Boltzmann method is developed, in which oxygen dissolution reaction at pore-ionomer interface, oxygen diffusion inside ionomer, and electrochemical reaction at ionomer-Pt interface are considered. Emphasis is put on structural parameters, especially Pt/C mass ratio, on the reactive transport process and the volumetric reaction rate (or current density). Pore-scale results show that while under high Pt loading oxygen is depleted quite close to the surface of the spherical agglomerate, it has to penetrate deep into the porous agglomerate before it is completely consumed under low Pt loading which is not captured by classical agglomerate model based on homogeneous mixture assumption. Pore-scale results also found that effects of transport inside the agglomerate decreases as reaction rate, porosity or ionomer thickness increases. Finally, local transport resistance inside the agglomerate is evaluated, and it increases as the agglomerate size increases or the dissolution reaction rate decreases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2019.03.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2019.03.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2015Embargo end date: 01 Jan 2014Publisher:Springer Science and Business Media LLC Jun Yao; Lei Zhang; Wen-Quan Tao; Li Chen; Qinjun Kang; Hari S. Viswanathan;Porous structures of shales are reconstructed based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analyzes of the nanoscale reconstructed shales are performed, including porosity, pore size distribution, specific surface area and pore connectivity. The multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) fluid flow model and single-relaxation-time (SRT) LBM diffusion model are adopted to simulate the fluid flow and Knudsen diffusion process within the reconstructed shales, respectively. Tortuosity, intrinsic permeability and effective Knudsen diffusivity are numerically predicted. The tortuosity is much higher than that commonly employed in Bruggeman equation. Correction of the intrinsic permeability by taking into consideration the contribution of Knudsen diffusion, which leads to the apparent permeability, is performed. The correction factor under different Knudsen number and pressure are estimated and compared with existing corrections reported in the literature. For the wide pressure range under investigation, the correction factor is always greater than 1, indicating the Knudsen diffusion always plays a role on the transport mechanisms of shale gas in shales studied in the present study. Most of the values of correction factor are located in the transition regime, with no Darcy flow regime observed. arXiv admin note: substantial text overlap with arXiv:1410.1921
Scientific Reports arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep08089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 269 citations 269 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Scientific Reports arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep08089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2015Embargo end date: 01 Jan 2014Publisher:Springer Science and Business Media LLC Jun Yao; Lei Zhang; Wen-Quan Tao; Li Chen; Qinjun Kang; Hari S. Viswanathan;Porous structures of shales are reconstructed based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analyzes of the nanoscale reconstructed shales are performed, including porosity, pore size distribution, specific surface area and pore connectivity. The multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) fluid flow model and single-relaxation-time (SRT) LBM diffusion model are adopted to simulate the fluid flow and Knudsen diffusion process within the reconstructed shales, respectively. Tortuosity, intrinsic permeability and effective Knudsen diffusivity are numerically predicted. The tortuosity is much higher than that commonly employed in Bruggeman equation. Correction of the intrinsic permeability by taking into consideration the contribution of Knudsen diffusion, which leads to the apparent permeability, is performed. The correction factor under different Knudsen number and pressure are estimated and compared with existing corrections reported in the literature. For the wide pressure range under investigation, the correction factor is always greater than 1, indicating the Knudsen diffusion always plays a role on the transport mechanisms of shale gas in shales studied in the present study. Most of the values of correction factor are located in the transition regime, with no Darcy flow regime observed. arXiv admin note: substantial text overlap with arXiv:1410.1921
Scientific Reports arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep08089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 269 citations 269 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Scientific Reports arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep08089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Partha P. Mukherjee; Qinjun Kang; Chao Yang Wang;A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water covers the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blocks the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL play a major role in the mass transport loss and hence in the water management of a PEFC. In this work the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation is presented to study the influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer. The two-phase regime transition phenomenon in the capillary dominated transport in the CL and the influence of the mixed wetting characteristics on the flooding dynamics in the GDL are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2009.06.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu212 citations 212 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2009.06.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Partha P. Mukherjee; Qinjun Kang; Chao Yang Wang;A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water covers the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blocks the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL play a major role in the mass transport loss and hence in the water management of a PEFC. In this work the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation is presented to study the influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer. The two-phase regime transition phenomenon in the capillary dominated transport in the CL and the influence of the mixed wetting characteristics on the flooding dynamics in the GDL are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2009.06.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu212 citations 212 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2009.06.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Jianchao Cai; Zhien Zhang; Qinjun Kang; Harpreet Singh;doi: 10.3390/en12101865
As a major supplement to conventional fossil fuels, unconventional oil and gas resources have received significant attention across the globe. However, significant challenges need to be overcome in order to economically develop these resources, and new technologies based on a fundamental understanding of flow and transport processes in unconventional reservoirs are the key. This special issue collects a series of recent studies focused on the application of novel technologies and theories in unconventional reservoirs, covering the fields of petrophysical characterization, hydraulic fracturing, fluid transport physics, enhanced oil recovery, and geothermal energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Jianchao Cai; Zhien Zhang; Qinjun Kang; Harpreet Singh;doi: 10.3390/en12101865
As a major supplement to conventional fossil fuels, unconventional oil and gas resources have received significant attention across the globe. However, significant challenges need to be overcome in order to economically develop these resources, and new technologies based on a fundamental understanding of flow and transport processes in unconventional reservoirs are the key. This special issue collects a series of recent studies focused on the application of novel technologies and theories in unconventional reservoirs, covering the fields of petrophysical characterization, hydraulic fracturing, fluid transport physics, enhanced oil recovery, and geothermal energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Moran Wang; Qinjun Kang; Ning Pan;The effective thermal conductivity enhancement of carbon fiber composites is investigated in this contribution using a three-dimensional numerical method. First a more realistic three-dimensional distribution of fibers dispersed in a matrix phase is reproduced by a developed random generation-growth method to eliminate the overrated inter-fiber contacts by the two-dimensional simulations. The energy transport governing equations are then solved through the three-dimensional structures using a high-efficiency lattice Boltzmann scheme. The resultant predictions agree well with the available experimental data. Compared with the existing theoretical models, the present method does not depend upon empirical parameters which have to be determined case by case, so that it is useful for design and optimization for new materials, beyond prediction and analysis just for existing composites.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2008.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu182 citations 182 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2008.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Moran Wang; Qinjun Kang; Ning Pan;The effective thermal conductivity enhancement of carbon fiber composites is investigated in this contribution using a three-dimensional numerical method. First a more realistic three-dimensional distribution of fibers dispersed in a matrix phase is reproduced by a developed random generation-growth method to eliminate the overrated inter-fiber contacts by the two-dimensional simulations. The energy transport governing equations are then solved through the three-dimensional structures using a high-efficiency lattice Boltzmann scheme. The resultant predictions agree well with the available experimental data. Compared with the existing theoretical models, the present method does not depend upon empirical parameters which have to be determined case by case, so that it is useful for design and optimization for new materials, beyond prediction and analysis just for existing composites.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2008.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu182 citations 182 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2008.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2024Publisher:Office of Scientific and Technical Information (OSTI) Javier Santos; Agnese Marcato; Qinjun Kang; Mohamed Mehana; Daniel O'Malley; Hari Viswanathan; Nicholas Lubbers;doi: 10.2172/2377298
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/2377298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/2377298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2024Publisher:Office of Scientific and Technical Information (OSTI) Javier Santos; Agnese Marcato; Qinjun Kang; Mohamed Mehana; Daniel O'Malley; Hari Viswanathan; Nicholas Lubbers;doi: 10.2172/2377298
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/2377298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/2377298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohamed Mehana; Fangxuan Chen; Mashhad Fahes; Qinjun Kang; Hari Viswanathan;doi: 10.3390/en15228557
Field operations report that at least half of the fracturing fluid used in shale reservoirs is trapped. These trapped fluids can trigger various geochemical interactions. However, the impact of these interactions on well performance is still elusive. We modeled a hydraulic fracture stage where we simulated the initial conditions by injecting the fracturing fluid and shutting the well to allow the fluids to soak into the formation. Our results suggest a positive correlation between the dissolution and precipitation rates and the carbonate content of the rock. In addition, we observed that gas and load recovery are overestimated when geochemical interactions are overlooked. We also observed promising results for sea water as a good alternative fracturing fluid. Moreover, we observed better performance for cases with lower-saline connate water. The reactions of carbonates outweigh the reactions of clays in most cases. Sensitivity analysis suggests that the concentration of SO4, K and Na ions in the fracturing fluid, and the illite and calcite mineral content, along with the reservoir temperature, are the key factors affecting well performance. In conclusion, geochemical interactions should be considered for properly modeling the fate of the fracturing fluids and their impact on well performance.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohamed Mehana; Fangxuan Chen; Mashhad Fahes; Qinjun Kang; Hari Viswanathan;doi: 10.3390/en15228557
Field operations report that at least half of the fracturing fluid used in shale reservoirs is trapped. These trapped fluids can trigger various geochemical interactions. However, the impact of these interactions on well performance is still elusive. We modeled a hydraulic fracture stage where we simulated the initial conditions by injecting the fracturing fluid and shutting the well to allow the fluids to soak into the formation. Our results suggest a positive correlation between the dissolution and precipitation rates and the carbonate content of the rock. In addition, we observed that gas and load recovery are overestimated when geochemical interactions are overlooked. We also observed promising results for sea water as a good alternative fracturing fluid. Moreover, we observed better performance for cases with lower-saline connate water. The reactions of carbonates outweigh the reactions of clays in most cases. Sensitivity analysis suggests that the concentration of SO4, K and Na ions in the fracturing fluid, and the illite and calcite mineral content, along with the reservoir temperature, are the key factors affecting well performance. In conclusion, geochemical interactions should be considered for properly modeling the fate of the fracturing fluids and their impact on well performance.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8557/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2016Embargo end date: 01 Jan 2016Publisher:Elsevier BV Junjian Wang; Junjian Wang; Qinjun Kang; Li Chen; Li Chen; Sheik S. Rahman;Gas flow in shale is associated with both organic matter (OM) and inorganic matter (IOM) which contain nanopores ranging in size from a few to hundreds of nanometers. In addition to the noncontinuum effect which leads to an apparent permeability of gas higher than the intrinsic permeability, the surface diffusion of adsorbed gas in organic pores also can influence the apparent permeability through its own transport mechanism. In this study, a generalized lattice Boltzmann model (GLBM) is employed for gas flow through the reconstructed shale matrix consisting of OM and IOM. The Expectation-Maximization (EM) algorithm is used to assign the pore size distribution to each component, and the dusty gas model (DGM) and generalized Maxwell-Stefan model (GMS) are adopted to calculate the apparent permeability accounting for multiple transport mechanisms including viscous flow, Knudsen diffusion and surface diffusion. Effects of pore radius and pressure on permeability of both IOM and OM as well as effects of Langmuir parameters on OM are investigated. Moreover, the effect of total organic content and distribution on the apparent permeability of the reconstructed shale matrix is also studied. It is found that the distribution of OM and IOM has a negligible influence on apparent permeability, whereas the total organic content and the surface diffusion play a significant role in gas transport in shale matrix. 19 pages, 17 Figures
Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2016Embargo end date: 01 Jan 2016Publisher:Elsevier BV Junjian Wang; Junjian Wang; Qinjun Kang; Li Chen; Li Chen; Sheik S. Rahman;Gas flow in shale is associated with both organic matter (OM) and inorganic matter (IOM) which contain nanopores ranging in size from a few to hundreds of nanometers. In addition to the noncontinuum effect which leads to an apparent permeability of gas higher than the intrinsic permeability, the surface diffusion of adsorbed gas in organic pores also can influence the apparent permeability through its own transport mechanism. In this study, a generalized lattice Boltzmann model (GLBM) is employed for gas flow through the reconstructed shale matrix consisting of OM and IOM. The Expectation-Maximization (EM) algorithm is used to assign the pore size distribution to each component, and the dusty gas model (DGM) and generalized Maxwell-Stefan model (GMS) are adopted to calculate the apparent permeability accounting for multiple transport mechanisms including viscous flow, Knudsen diffusion and surface diffusion. Effects of pore radius and pressure on permeability of both IOM and OM as well as effects of Langmuir parameters on OM are investigated. Moreover, the effect of total organic content and distribution on the apparent permeability of the reconstructed shale matrix is also studied. It is found that the distribution of OM and IOM has a negligible influence on apparent permeability, whereas the total organic content and the surface diffusion play a significant role in gas transport in shale matrix. 19 pages, 17 Figures
Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.05.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Wen-Quan Tao; Li Chen; Qinjun Kang; Ruiyuan Zhang; Pu He; Ya-Ling He;Abstract Reducing Platinum amount in proton exchange membrane fuel cell (PEMFC) is one of the main tasks to achieve low cost PEMFC. Recently, significant performance loss has been found under low Pt loading due to local mass transport limitations. In this study, pore-scale simulations are conducted to study oxygen transport within four-constituent microscopic structures of catalyst layer including a carbon particle, ionomer, Pt particles, and primary pores inside the carbon particle. Multiphase physicochemical processes are considered, including oxygen dissolution at the pore/ionomer interface, oxygen diffusion within the ionomer film and inside the primary pores, and reactions at the Pt interface. Local transport resistance is calculated based on the pore-scale concentration field predicted. The simulation results are compared with existing experimental results and 1D models. Simulation results show that dissolution resistance at the secondary pore/ionomer interface is about 10–50 times higher than that inside the ionomoer. Local transport resistance increases as Pt loading decreases, especially under Pt loading of 0.1 mg cm−2. Besides, local transport resistance can be reduced by depositing more Pt outside the carbon particle, alleviating agglomeration and/or decreasing the ionomer thickness. The simulation results indicate that local transport characteristics should be considered when developing 1D agglomeration model of catalyst layer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Wen-Quan Tao; Li Chen; Qinjun Kang; Ruiyuan Zhang; Pu He; Ya-Ling He;Abstract Reducing Platinum amount in proton exchange membrane fuel cell (PEMFC) is one of the main tasks to achieve low cost PEMFC. Recently, significant performance loss has been found under low Pt loading due to local mass transport limitations. In this study, pore-scale simulations are conducted to study oxygen transport within four-constituent microscopic structures of catalyst layer including a carbon particle, ionomer, Pt particles, and primary pores inside the carbon particle. Multiphase physicochemical processes are considered, including oxygen dissolution at the pore/ionomer interface, oxygen diffusion within the ionomer film and inside the primary pores, and reactions at the Pt interface. Local transport resistance is calculated based on the pore-scale concentration field predicted. The simulation results are compared with existing experimental results and 1D models. Simulation results show that dissolution resistance at the secondary pore/ionomer interface is about 10–50 times higher than that inside the ionomoer. Local transport resistance increases as Pt loading decreases, especially under Pt loading of 0.1 mg cm−2. Besides, local transport resistance can be reduced by depositing more Pt outside the carbon particle, alleviating agglomeration and/or decreasing the ionomer thickness. The simulation results indicate that local transport characteristics should be considered when developing 1D agglomeration model of catalyst layer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Hari S. Viswanathan; Robert P. Currier; Jeffrey D. Hyman; Qinjun Kang; Satish Karra; J. William Carey; Joaquin Jimenez-Martinez; Mark L. Porter; Richard S. Middleton;Abstract Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO2 as a working fluid for shale gas production. We theorize and outline potential advantages of CO2 including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO2. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO2 proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.
Applied Energy arrow_drop_down Applied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 701 citations 701 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Applied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Hari S. Viswanathan; Robert P. Currier; Jeffrey D. Hyman; Qinjun Kang; Satish Karra; J. William Carey; Joaquin Jimenez-Martinez; Mark L. Porter; Richard S. Middleton;Abstract Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO2 as a working fluid for shale gas production. We theorize and outline potential advantages of CO2 including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO2. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO2 proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.
Applied Energy arrow_drop_down Applied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 701 citations 701 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Applied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Wen-Quan Tao; Li Chen; Qinjun Kang;Abstract Porous structures of agglomerates in cathode catalyst layers (CLs) of proton exchange membrane fuel cells are reconstructed, in which all the four phases are resolved including Platinum, carbon, ionomer and pore. A pore-scale reactive transport model based on the lattice Boltzmann method is developed, in which oxygen dissolution reaction at pore-ionomer interface, oxygen diffusion inside ionomer, and electrochemical reaction at ionomer-Pt interface are considered. Emphasis is put on structural parameters, especially Pt/C mass ratio, on the reactive transport process and the volumetric reaction rate (or current density). Pore-scale results show that while under high Pt loading oxygen is depleted quite close to the surface of the spherical agglomerate, it has to penetrate deep into the porous agglomerate before it is completely consumed under low Pt loading which is not captured by classical agglomerate model based on homogeneous mixture assumption. Pore-scale results also found that effects of transport inside the agglomerate decreases as reaction rate, porosity or ionomer thickness increases. Finally, local transport resistance inside the agglomerate is evaluated, and it increases as the agglomerate size increases or the dissolution reaction rate decreases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2019.03.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2019.03.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Wen-Quan Tao; Li Chen; Qinjun Kang;Abstract Porous structures of agglomerates in cathode catalyst layers (CLs) of proton exchange membrane fuel cells are reconstructed, in which all the four phases are resolved including Platinum, carbon, ionomer and pore. A pore-scale reactive transport model based on the lattice Boltzmann method is developed, in which oxygen dissolution reaction at pore-ionomer interface, oxygen diffusion inside ionomer, and electrochemical reaction at ionomer-Pt interface are considered. Emphasis is put on structural parameters, especially Pt/C mass ratio, on the reactive transport process and the volumetric reaction rate (or current density). Pore-scale results show that while under high Pt loading oxygen is depleted quite close to the surface of the spherical agglomerate, it has to penetrate deep into the porous agglomerate before it is completely consumed under low Pt loading which is not captured by classical agglomerate model based on homogeneous mixture assumption. Pore-scale results also found that effects of transport inside the agglomerate decreases as reaction rate, porosity or ionomer thickness increases. Finally, local transport resistance inside the agglomerate is evaluated, and it increases as the agglomerate size increases or the dissolution reaction rate decreases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2019.03.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2019.03.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2015Embargo end date: 01 Jan 2014Publisher:Springer Science and Business Media LLC Jun Yao; Lei Zhang; Wen-Quan Tao; Li Chen; Qinjun Kang; Hari S. Viswanathan;Porous structures of shales are reconstructed based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analyzes of the nanoscale reconstructed shales are performed, including porosity, pore size distribution, specific surface area and pore connectivity. The multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) fluid flow model and single-relaxation-time (SRT) LBM diffusion model are adopted to simulate the fluid flow and Knudsen diffusion process within the reconstructed shales, respectively. Tortuosity, intrinsic permeability and effective Knudsen diffusivity are numerically predicted. The tortuosity is much higher than that commonly employed in Bruggeman equation. Correction of the intrinsic permeability by taking into consideration the contribution of Knudsen diffusion, which leads to the apparent permeability, is performed. The correction factor under different Knudsen number and pressure are estimated and compared with existing corrections reported in the literature. For the wide pressure range under investigation, the correction factor is always greater than 1, indicating the Knudsen diffusion always plays a role on the transport mechanisms of shale gas in shales studied in the present study. Most of the values of correction factor are located in the transition regime, with no Darcy flow regime observed. arXiv admin note: substantial text overlap with arXiv:1410.1921
Scientific Reports arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep08089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 269 citations 269 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Scientific Reports arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep08089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2015Embargo end date: 01 Jan 2014Publisher:Springer Science and Business Media LLC Jun Yao; Lei Zhang; Wen-Quan Tao; Li Chen; Qinjun Kang; Hari S. Viswanathan;Porous structures of shales are reconstructed based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analyzes of the nanoscale reconstructed shales are performed, including porosity, pore size distribution, specific surface area and pore connectivity. The multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) fluid flow model and single-relaxation-time (SRT) LBM diffusion model are adopted to simulate the fluid flow and Knudsen diffusion process within the reconstructed shales, respectively. Tortuosity, intrinsic permeability and effective Knudsen diffusivity are numerically predicted. The tortuosity is much higher than that commonly employed in Bruggeman equation. Correction of the intrinsic permeability by taking into consideration the contribution of Knudsen diffusion, which leads to the apparent permeability, is performed. The correction factor under different Knudsen number and pressure are estimated and compared with existing corrections reported in the literature. For the wide pressure range under investigation, the correction factor is always greater than 1, indicating the Knudsen diffusion always plays a role on the transport mechanisms of shale gas in shales studied in the present study. Most of the values of correction factor are located in the transition regime, with no Darcy flow regime observed. arXiv admin note: substantial text overlap with arXiv:1410.1921
Scientific Reports arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep08089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 269 citations 269 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Scientific Reports arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep08089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Partha P. Mukherjee; Qinjun Kang; Chao Yang Wang;A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water covers the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blocks the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL play a major role in the mass transport loss and hence in the water management of a PEFC. In this work the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation is presented to study the influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer. The two-phase regime transition phenomenon in the capillary dominated transport in the CL and the influence of the mixed wetting characteristics on the flooding dynamics in the GDL are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2009.06.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu212 citations 212 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2009.06.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Partha P. Mukherjee; Qinjun Kang; Chao Yang Wang;A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water covers the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blocks the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL play a major role in the mass transport loss and hence in the water management of a PEFC. In this work the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation is presented to study the influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer. The two-phase regime transition phenomenon in the capillary dominated transport in the CL and the influence of the mixed wetting characteristics on the flooding dynamics in the GDL are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2009.06.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu212 citations 212 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2009.06.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Jianchao Cai; Zhien Zhang; Qinjun Kang; Harpreet Singh;doi: 10.3390/en12101865
As a major supplement to conventional fossil fuels, unconventional oil and gas resources have received significant attention across the globe. However, significant challenges need to be overcome in order to economically develop these resources, and new technologies based on a fundamental understanding of flow and transport processes in unconventional reservoirs are the key. This special issue collects a series of recent studies focused on the application of novel technologies and theories in unconventional reservoirs, covering the fields of petrophysical characterization, hydraulic fracturing, fluid transport physics, enhanced oil recovery, and geothermal energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Jianchao Cai; Zhien Zhang; Qinjun Kang; Harpreet Singh;doi: 10.3390/en12101865
As a major supplement to conventional fossil fuels, unconventional oil and gas resources have received significant attention across the globe. However, significant challenges need to be overcome in order to economically develop these resources, and new technologies based on a fundamental understanding of flow and transport processes in unconventional reservoirs are the key. This special issue collects a series of recent studies focused on the application of novel technologies and theories in unconventional reservoirs, covering the fields of petrophysical characterization, hydraulic fracturing, fluid transport physics, enhanced oil recovery, and geothermal energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu