- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustriaPublisher:IOP Publishing John P Helveston; Stephanie M Seki; Jihoon Min; Evelyn Fairman; Arthur A Boni; Jeremy J Michalek; Inês M L Azevedo;Abstract A decarbonized future will require a transition to lower carbon fuels for personal transportation. We study consumer preferences for combustion fuels including gasoline, diesel, natural gas, and E85 (85% ethanol and 15% gasoline) using consumer choice survey data from two settings: online (n = 331) and in-person at refueling stations (n = 127). Light-duty vehicle owners were asked in a series of choice tasks to choose among fuels that varied in type, price, CO2 emissions, and location of origin for a hypothetical vehicle that could accept all fuels. We find that the majority of gasoline and E85 users are willing to substitute towards other fuels at today’s prices and attributes, while diesel users have a strong preference for diesel fuel. We also find that respondents are willing to pay on average $150/ton CO2 avoided from fuel consumption—more than most estimates of the social cost of carbon. Thus, communicating the climate benefits from alternative fuels may be an important strategy for decarbonizing the transportation sector.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab2bd2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab2bd2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustriaPublisher:IOP Publishing John P Helveston; Stephanie M Seki; Jihoon Min; Evelyn Fairman; Arthur A Boni; Jeremy J Michalek; Inês M L Azevedo;Abstract A decarbonized future will require a transition to lower carbon fuels for personal transportation. We study consumer preferences for combustion fuels including gasoline, diesel, natural gas, and E85 (85% ethanol and 15% gasoline) using consumer choice survey data from two settings: online (n = 331) and in-person at refueling stations (n = 127). Light-duty vehicle owners were asked in a series of choice tasks to choose among fuels that varied in type, price, CO2 emissions, and location of origin for a hypothetical vehicle that could accept all fuels. We find that the majority of gasoline and E85 users are willing to substitute towards other fuels at today’s prices and attributes, while diesel users have a strong preference for diesel fuel. We also find that respondents are willing to pay on average $150/ton CO2 avoided from fuel consumption—more than most estimates of the social cost of carbon. Thus, communicating the climate benefits from alternative fuels may be an important strategy for decarbonizing the transportation sector.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab2bd2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab2bd2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Lynn H Kaack; Parth Vaishnav; M Granger Morgan; Inês L Azevedo; Srijana Rai;Road freight transportation accounts for around 7% of total world energy-related carbon dioxide emissions. With the appropriate incentives, energy savings and emissions reductions can be achieved by shifting freight to rail or water modes, both of which are far more efficient than road. We briefly introduce five general strategies for decarbonizing freight transportation, and then focus on the literature and data relevant to estimating the global decarbonization potential through modal shift. We compare freight activity (in tonne-km) by mode for every country where data are available. We also describe major intraregional freight corridors, their modal structure, and their infrastructure needs. We find that the current world road and rail modal split is around 60:40. Most countries are experiencing strong growth in road freight and a shift from rail to road. Rail intermodal transportation holds great potential for replacing carbon-intense and fast-growing road freight, but it is essential to have a targeted design of freight systems, particularly in developing countries. Modal shift can be promoted by policies targeting infrastructure investments and internalizing external costs of road freight, but we find that not many countries have such policies in place. We identify research needs for decarbonizing the freight transportation sector both through improvements in the efficiency of individual modes and through new physical and institutional infrastructure that can support modal shift.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad56c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad56c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Lynn H Kaack; Parth Vaishnav; M Granger Morgan; Inês L Azevedo; Srijana Rai;Road freight transportation accounts for around 7% of total world energy-related carbon dioxide emissions. With the appropriate incentives, energy savings and emissions reductions can be achieved by shifting freight to rail or water modes, both of which are far more efficient than road. We briefly introduce five general strategies for decarbonizing freight transportation, and then focus on the literature and data relevant to estimating the global decarbonization potential through modal shift. We compare freight activity (in tonne-km) by mode for every country where data are available. We also describe major intraregional freight corridors, their modal structure, and their infrastructure needs. We find that the current world road and rail modal split is around 60:40. Most countries are experiencing strong growth in road freight and a shift from rail to road. Rail intermodal transportation holds great potential for replacing carbon-intense and fast-growing road freight, but it is essential to have a targeted design of freight systems, particularly in developing countries. Modal shift can be promoted by policies targeting infrastructure investments and internalizing external costs of road freight, but we find that not many countries have such policies in place. We identify research needs for decarbonizing the freight transportation sector both through improvements in the efficiency of individual modes and through new physical and institutional infrastructure that can support modal shift.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad56c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad56c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 Switzerland, SwitzerlandPublisher:Elsevier BV Siobhan Powell; Sonia Martin; Ram Rajagopal; Inês M.L. Azevedo; Jacques de Chalendar;Electricity pricing can be used to shift the timing of electricity demand, but the choice of price signals is highly constrained. Consumer rates are updated every few years and limited to simple daily profiles, yet must capture the complex dynamics of a changing electricity system. Emission factors (EFs) were developed as an evaluation tool, but are increasingly used as demand response (DR) signals. Given these constraints, can they be effective? We evaluate the emissions impact of EF-based electricity rates with and without supply-side emissions pricing. We study controlled electric vehicle (EV) charging in the Western U.S. up to 2037 by coupling an electricity system dispatch model and a data-driven EV charging model. We compare average and short-run marginal EFs with a new medium-run marginal EF that better matches the timeline of electricity rate updates. We find that a stable supply-side signal makes DR more valuable: DR reduces emissions by up to 6% with supply-side carbon pricing or just 2% without it. Medium-run marginal EFs yield the most consistent emission reductions, but constraints on charging flexibility limit their impact. We recommend policymakers base rates for DR on medium-run marginal emission factors and implement supply-side carbon pricing to facilitate greater emission reductions. Energy Policy, 190 ISSN:0301-4215
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 Switzerland, SwitzerlandPublisher:Elsevier BV Siobhan Powell; Sonia Martin; Ram Rajagopal; Inês M.L. Azevedo; Jacques de Chalendar;Electricity pricing can be used to shift the timing of electricity demand, but the choice of price signals is highly constrained. Consumer rates are updated every few years and limited to simple daily profiles, yet must capture the complex dynamics of a changing electricity system. Emission factors (EFs) were developed as an evaluation tool, but are increasingly used as demand response (DR) signals. Given these constraints, can they be effective? We evaluate the emissions impact of EF-based electricity rates with and without supply-side emissions pricing. We study controlled electric vehicle (EV) charging in the Western U.S. up to 2037 by coupling an electricity system dispatch model and a data-driven EV charging model. We compare average and short-run marginal EFs with a new medium-run marginal EF that better matches the timeline of electricity rate updates. We find that a stable supply-side signal makes DR more valuable: DR reduces emissions by up to 6% with supply-side carbon pricing or just 2% without it. Medium-run marginal EFs yield the most consistent emission reductions, but constraints on charging flexibility limit their impact. We recommend policymakers base rates for DR on medium-run marginal emission factors and implement supply-side carbon pricing to facilitate greater emission reductions. Energy Policy, 190 ISSN:0301-4215
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:NSF | Graduate Research Fellows...NSF| Graduate Research Fellowship Program (GRFP)Authors: Evan D. Sherwin; Max Henrion; Inês M. L. Azevedo;Long-term projections of energy consumption, supply and prices heavily influence decisions regarding long-lived energy infrastructure. Predicting the evolution of these quantities over multiple years to decades is a difficult task. Here, we estimate year-on-year volatility and unpredictability over multi-decade time frames for many quantities in the US energy system using historical projections. We determine the distribution over time of the most extreme projection errors (unpredictability) from 1985 to 2014, and the largest year-over-year changes (volatility) in the quantities themselves from 1949 to 2014. Our results show that both volatility and unpredictability have increased in the past decade, compared to the three and two decades before it. These findings may be useful for energy decision-makers to consider as they invest in and regulate long-lived energy infrastructure in a deeply uncertain world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0121-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0121-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:NSF | Graduate Research Fellows...NSF| Graduate Research Fellowship Program (GRFP)Authors: Evan D. Sherwin; Max Henrion; Inês M. L. Azevedo;Long-term projections of energy consumption, supply and prices heavily influence decisions regarding long-lived energy infrastructure. Predicting the evolution of these quantities over multiple years to decades is a difficult task. Here, we estimate year-on-year volatility and unpredictability over multi-decade time frames for many quantities in the US energy system using historical projections. We determine the distribution over time of the most extreme projection errors (unpredictability) from 1985 to 2014, and the largest year-over-year changes (volatility) in the quantities themselves from 1949 to 2014. Our results show that both volatility and unpredictability have increased in the past decade, compared to the three and two decades before it. These findings may be useful for energy decision-makers to consider as they invest in and regulate long-lived energy infrastructure in a deeply uncertain world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0121-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0121-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Evan D. Sherwin; Max Henrion; Inês M. L. Azevedo;In the version of this Analysis originally published, the key for the size frequency in Fig. 4 was erroneously switched, and should have read 5% for the small black dot, and 50% for the large black dot. This has now been amended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Evan D. Sherwin; Max Henrion; Inês M. L. Azevedo;In the version of this Analysis originally published, the key for the size frequency in Fig. 4 was erroneously switched, and should have read 5% for the small black dot, and 50% for the large black dot. This has now been amended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER:Open-Source Data A...NSF| CAREER:Open-Source Data Analytics for Distribution Systems Management and OperationsSiobhan Powell; Gustavo Vianna Cezar; Liang Min; Inês M. L. Azevedo; Ram Rajagopal;AbstractElectric vehicles will contribute to emissions reductions in the United States, but their charging may challenge electricity grid operations. We present a data-driven, realistic model of charging demand that captures the diverse charging behaviours of future adopters in the US Western Interconnection. We study charging control and infrastructure build-out as critical factors shaping charging load and evaluate grid impact under rapid electric vehicle adoption with a detailed economic dispatch model of 2035 generation. We find that peak net electricity demand increases by up to 25% with forecast adoption and by 50% in a stress test with full electrification. Locally optimized controls and high home charging can strain the grid. Shifting instead to uncontrolled, daytime charging can reduce storage requirements, excess non-fossil fuel generation, ramping and emissions. Our results urge policymakers to reflect generation-level impacts in utility rates and deploy charging infrastructure that promotes a shift from home to daytime charging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 153 citations 153 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER:Open-Source Data A...NSF| CAREER:Open-Source Data Analytics for Distribution Systems Management and OperationsSiobhan Powell; Gustavo Vianna Cezar; Liang Min; Inês M. L. Azevedo; Ram Rajagopal;AbstractElectric vehicles will contribute to emissions reductions in the United States, but their charging may challenge electricity grid operations. We present a data-driven, realistic model of charging demand that captures the diverse charging behaviours of future adopters in the US Western Interconnection. We study charging control and infrastructure build-out as critical factors shaping charging load and evaluate grid impact under rapid electric vehicle adoption with a detailed economic dispatch model of 2035 generation. We find that peak net electricity demand increases by up to 25% with forecast adoption and by 50% in a stress test with full electrification. Locally optimized controls and high home charging can strain the grid. Shifting instead to uncontrolled, daytime charging can reduce storage requirements, excess non-fossil fuel generation, ramping and emissions. Our results urge policymakers to reflect generation-level impacts in utility rates and deploy charging infrastructure that promotes a shift from home to daytime charging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 153 citations 153 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:IOP Publishing Aniruddh Mohan; Shayak Sengupta; Parth Vaishnav; Rahul Tongia; Asim Ahmed; Inês L Azevedo;Abstract Unabated coal power in India must be phased out by mid-century to achieve global climate targets under the Paris Agreement. Here we estimate the costs of hybrid power plants—lithium-ion battery storage with wind and solar PV—to replace coal generation. We design least cost mixes of these technologies to supply stylized baseload and load-following generation profiles in three Indian states—Karnataka, Gujarat, and Tamil Nadu. Our analysis shows that availability of low cost capital, solar PV capital costs of at least $250 kW−1, and battery storage capacity costs at least 50% cheaper than current levels will be required to phase out existing coal power plants. Phaseout by 2040 requires a 6% annual decline in the levelized cost of hybrid systems over the next two decades. We find that replacing coal generation with hybrid systems 99% of the hours over multiple decades is roughly 40% cheaper than 100% replacement, indicating a key role for other low cost grid flexibility mechanisms to help hasten coal phaseout. Solar PV is more suited to pairing with short duration storage than wind power. Overall, our results describe the challenging technological and policy advances needed to achieve the temperature goals of the Paris Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac98d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac98d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:IOP Publishing Aniruddh Mohan; Shayak Sengupta; Parth Vaishnav; Rahul Tongia; Asim Ahmed; Inês L Azevedo;Abstract Unabated coal power in India must be phased out by mid-century to achieve global climate targets under the Paris Agreement. Here we estimate the costs of hybrid power plants—lithium-ion battery storage with wind and solar PV—to replace coal generation. We design least cost mixes of these technologies to supply stylized baseload and load-following generation profiles in three Indian states—Karnataka, Gujarat, and Tamil Nadu. Our analysis shows that availability of low cost capital, solar PV capital costs of at least $250 kW−1, and battery storage capacity costs at least 50% cheaper than current levels will be required to phase out existing coal power plants. Phaseout by 2040 requires a 6% annual decline in the levelized cost of hybrid systems over the next two decades. We find that replacing coal generation with hybrid systems 99% of the hours over multiple decades is roughly 40% cheaper than 100% replacement, indicating a key role for other low cost grid flexibility mechanisms to help hasten coal phaseout. Solar PV is more suited to pairing with short duration storage than wind power. Overall, our results describe the challenging technological and policy advances needed to achieve the temperature goals of the Paris Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac98d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac98d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Shayak Sengupta; Thomas Spencer; Neshwin Rodrigues; Raghav Pachouri; Shubham Thakare; Peter J. Adams; Rahul Tongia; Inês M. L. Azevedo;pmid: 35748433
Emission factors from Indian electricity remain poorly characterized, despite known spatial and temporal variability. Limited publicly available emissions and generation data at sufficient detail make it difficult to understand the consequences of emissions to climate change and air pollution, potentially missing cost-effective policy designs for the world's third largest power grid. We use reduced-form and full-form power dispatch models to quantify current (2017-2018) and future (2030-2031) marginal CO2, SO2, NOX, and PM2.5 emission factors from Indian power generation. These marginal emissions represent emissions changes due to small changes in demand. For 2017-2018, spatial variability in marginal CO2 emission factors range 3 orders of magnitude across India's states. There is limited seasonal and intraday variability with coal generation likely to meet changes in demand more than half the time in more than half of the states. Assuming the Government of India approximate 2030 targets, the median marginal CO2 emission factor across states decreases by approximately a factor of 2, but emission factors still span 3 orders of magnitude across states. Under 2030-2031 assumptions there is greater seasonal and intraday variability by up to factors of two and four, respectively. Estimates provide emission factors to evaluate interventions such as electric vehicles, increased air conditioning, and energy efficiency.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c07500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c07500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Shayak Sengupta; Thomas Spencer; Neshwin Rodrigues; Raghav Pachouri; Shubham Thakare; Peter J. Adams; Rahul Tongia; Inês M. L. Azevedo;pmid: 35748433
Emission factors from Indian electricity remain poorly characterized, despite known spatial and temporal variability. Limited publicly available emissions and generation data at sufficient detail make it difficult to understand the consequences of emissions to climate change and air pollution, potentially missing cost-effective policy designs for the world's third largest power grid. We use reduced-form and full-form power dispatch models to quantify current (2017-2018) and future (2030-2031) marginal CO2, SO2, NOX, and PM2.5 emission factors from Indian power generation. These marginal emissions represent emissions changes due to small changes in demand. For 2017-2018, spatial variability in marginal CO2 emission factors range 3 orders of magnitude across India's states. There is limited seasonal and intraday variability with coal generation likely to meet changes in demand more than half the time in more than half of the states. Assuming the Government of India approximate 2030 targets, the median marginal CO2 emission factor across states decreases by approximately a factor of 2, but emission factors still span 3 orders of magnitude across states. Under 2030-2031 assumptions there is greater seasonal and intraday variability by up to factors of two and four, respectively. Estimates provide emission factors to evaluate interventions such as electric vehicles, increased air conditioning, and energy efficiency.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c07500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c07500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Maninder P. S. Thind; Christopher W. Tessum; Inês L. Azevedo; Julian D. Marshall;pmid: 31746196
Electricity generation is a large contributor to fine particulate matter (PM2.5) air pollution. However, the demographic distribution of the resulting exposure is largely unknown. We estimate exposures to and health impacts of PM2.5 from electricity generation in the US, for each of the seven Regional Transmission Organizations (RTOs), for each US state, by income and by race. We find that average exposures are the highest for blacks, followed by non-Latino whites. Exposures for remaining groups (e.g., Asians, Native Americans, Latinos) are somewhat lower. Disparities by race/ethnicity are observed for each income category, indicating that the racial/ethnic differences hold even after accounting for differences in income. Levels of disparity differ by state and RTO. Exposures are higher for lower-income than for higher-income, but disparities are larger by race than by income. Geographically, we observe large differences between where electricity is generated and where people experience the resulting PM2.5 health consequences; some states are net exporters of health impacts, other are net importers. For 36 US states, most of the health impacts are attributable to emissions in other states. Most of the total impacts are attributable to coal rather than other fuels.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Maninder P. S. Thind; Christopher W. Tessum; Inês L. Azevedo; Julian D. Marshall;pmid: 31746196
Electricity generation is a large contributor to fine particulate matter (PM2.5) air pollution. However, the demographic distribution of the resulting exposure is largely unknown. We estimate exposures to and health impacts of PM2.5 from electricity generation in the US, for each of the seven Regional Transmission Organizations (RTOs), for each US state, by income and by race. We find that average exposures are the highest for blacks, followed by non-Latino whites. Exposures for remaining groups (e.g., Asians, Native Americans, Latinos) are somewhat lower. Disparities by race/ethnicity are observed for each income category, indicating that the racial/ethnic differences hold even after accounting for differences in income. Levels of disparity differ by state and RTO. Exposures are higher for lower-income than for higher-income, but disparities are larger by race than by income. Geographically, we observe large differences between where electricity is generated and where people experience the resulting PM2.5 health consequences; some states are net exporters of health impacts, other are net importers. For 36 US states, most of the health impacts are attributable to emissions in other states. Most of the total impacts are attributable to coal rather than other fuels.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Thomas A. Deetjen; Inês L. Azevedo;pmid: 31436968
This study develops a reduced-order power plant dispatch model and uses it to simulate marginal emissions factors (MEFs) for the 2014-2017 United States (U.S.) electric grid at the North American Electric Reliability Corporation (NERC) regional level. MEFs help quantify the health, environmental, and climate change impacts caused by changes in marginal net electricity consumption, which could result, for example, from new technologies or policies. This study develops the model, validates it against historical data, and compares its simulated MEFs against historically derived regression-based MEFs. Our method accurately reproduces CO2, SO2, and NOx emissions for multiple U.S. NERC regions and years and enables us to analyze future scenarios that are absent from the historical data. Though historically derived regression-based MEFs are generally more accurate, our simulated MEFs provide a more nuanced picture of how clusters of low- or high-emitting power plants of similar production cost create large swings in MEFs throughout the day. Policymakers could use these dynamic MEFs to target demand-reduction strategies at high-emissions portions of the power plant merit order.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Thomas A. Deetjen; Inês L. Azevedo;pmid: 31436968
This study develops a reduced-order power plant dispatch model and uses it to simulate marginal emissions factors (MEFs) for the 2014-2017 United States (U.S.) electric grid at the North American Electric Reliability Corporation (NERC) regional level. MEFs help quantify the health, environmental, and climate change impacts caused by changes in marginal net electricity consumption, which could result, for example, from new technologies or policies. This study develops the model, validates it against historical data, and compares its simulated MEFs against historically derived regression-based MEFs. Our method accurately reproduces CO2, SO2, and NOx emissions for multiple U.S. NERC regions and years and enables us to analyze future scenarios that are absent from the historical data. Though historically derived regression-based MEFs are generally more accurate, our simulated MEFs provide a more nuanced picture of how clusters of low- or high-emitting power plants of similar production cost create large swings in MEFs throughout the day. Policymakers could use these dynamic MEFs to target demand-reduction strategies at high-emissions portions of the power plant merit order.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustriaPublisher:IOP Publishing John P Helveston; Stephanie M Seki; Jihoon Min; Evelyn Fairman; Arthur A Boni; Jeremy J Michalek; Inês M L Azevedo;Abstract A decarbonized future will require a transition to lower carbon fuels for personal transportation. We study consumer preferences for combustion fuels including gasoline, diesel, natural gas, and E85 (85% ethanol and 15% gasoline) using consumer choice survey data from two settings: online (n = 331) and in-person at refueling stations (n = 127). Light-duty vehicle owners were asked in a series of choice tasks to choose among fuels that varied in type, price, CO2 emissions, and location of origin for a hypothetical vehicle that could accept all fuels. We find that the majority of gasoline and E85 users are willing to substitute towards other fuels at today’s prices and attributes, while diesel users have a strong preference for diesel fuel. We also find that respondents are willing to pay on average $150/ton CO2 avoided from fuel consumption—more than most estimates of the social cost of carbon. Thus, communicating the climate benefits from alternative fuels may be an important strategy for decarbonizing the transportation sector.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab2bd2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab2bd2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustriaPublisher:IOP Publishing John P Helveston; Stephanie M Seki; Jihoon Min; Evelyn Fairman; Arthur A Boni; Jeremy J Michalek; Inês M L Azevedo;Abstract A decarbonized future will require a transition to lower carbon fuels for personal transportation. We study consumer preferences for combustion fuels including gasoline, diesel, natural gas, and E85 (85% ethanol and 15% gasoline) using consumer choice survey data from two settings: online (n = 331) and in-person at refueling stations (n = 127). Light-duty vehicle owners were asked in a series of choice tasks to choose among fuels that varied in type, price, CO2 emissions, and location of origin for a hypothetical vehicle that could accept all fuels. We find that the majority of gasoline and E85 users are willing to substitute towards other fuels at today’s prices and attributes, while diesel users have a strong preference for diesel fuel. We also find that respondents are willing to pay on average $150/ton CO2 avoided from fuel consumption—more than most estimates of the social cost of carbon. Thus, communicating the climate benefits from alternative fuels may be an important strategy for decarbonizing the transportation sector.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab2bd2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16207/1/Helveston_2019_Environ._Res._Lett._14_084035.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab2bd2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Lynn H Kaack; Parth Vaishnav; M Granger Morgan; Inês L Azevedo; Srijana Rai;Road freight transportation accounts for around 7% of total world energy-related carbon dioxide emissions. With the appropriate incentives, energy savings and emissions reductions can be achieved by shifting freight to rail or water modes, both of which are far more efficient than road. We briefly introduce five general strategies for decarbonizing freight transportation, and then focus on the literature and data relevant to estimating the global decarbonization potential through modal shift. We compare freight activity (in tonne-km) by mode for every country where data are available. We also describe major intraregional freight corridors, their modal structure, and their infrastructure needs. We find that the current world road and rail modal split is around 60:40. Most countries are experiencing strong growth in road freight and a shift from rail to road. Rail intermodal transportation holds great potential for replacing carbon-intense and fast-growing road freight, but it is essential to have a targeted design of freight systems, particularly in developing countries. Modal shift can be promoted by policies targeting infrastructure investments and internalizing external costs of road freight, but we find that not many countries have such policies in place. We identify research needs for decarbonizing the freight transportation sector both through improvements in the efficiency of individual modes and through new physical and institutional infrastructure that can support modal shift.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad56c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad56c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Lynn H Kaack; Parth Vaishnav; M Granger Morgan; Inês L Azevedo; Srijana Rai;Road freight transportation accounts for around 7% of total world energy-related carbon dioxide emissions. With the appropriate incentives, energy savings and emissions reductions can be achieved by shifting freight to rail or water modes, both of which are far more efficient than road. We briefly introduce five general strategies for decarbonizing freight transportation, and then focus on the literature and data relevant to estimating the global decarbonization potential through modal shift. We compare freight activity (in tonne-km) by mode for every country where data are available. We also describe major intraregional freight corridors, their modal structure, and their infrastructure needs. We find that the current world road and rail modal split is around 60:40. Most countries are experiencing strong growth in road freight and a shift from rail to road. Rail intermodal transportation holds great potential for replacing carbon-intense and fast-growing road freight, but it is essential to have a targeted design of freight systems, particularly in developing countries. Modal shift can be promoted by policies targeting infrastructure investments and internalizing external costs of road freight, but we find that not many countries have such policies in place. We identify research needs for decarbonizing the freight transportation sector both through improvements in the efficiency of individual modes and through new physical and institutional infrastructure that can support modal shift.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad56c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad56c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 Switzerland, SwitzerlandPublisher:Elsevier BV Siobhan Powell; Sonia Martin; Ram Rajagopal; Inês M.L. Azevedo; Jacques de Chalendar;Electricity pricing can be used to shift the timing of electricity demand, but the choice of price signals is highly constrained. Consumer rates are updated every few years and limited to simple daily profiles, yet must capture the complex dynamics of a changing electricity system. Emission factors (EFs) were developed as an evaluation tool, but are increasingly used as demand response (DR) signals. Given these constraints, can they be effective? We evaluate the emissions impact of EF-based electricity rates with and without supply-side emissions pricing. We study controlled electric vehicle (EV) charging in the Western U.S. up to 2037 by coupling an electricity system dispatch model and a data-driven EV charging model. We compare average and short-run marginal EFs with a new medium-run marginal EF that better matches the timeline of electricity rate updates. We find that a stable supply-side signal makes DR more valuable: DR reduces emissions by up to 6% with supply-side carbon pricing or just 2% without it. Medium-run marginal EFs yield the most consistent emission reductions, but constraints on charging flexibility limit their impact. We recommend policymakers base rates for DR on medium-run marginal emission factors and implement supply-side carbon pricing to facilitate greater emission reductions. Energy Policy, 190 ISSN:0301-4215
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 Switzerland, SwitzerlandPublisher:Elsevier BV Siobhan Powell; Sonia Martin; Ram Rajagopal; Inês M.L. Azevedo; Jacques de Chalendar;Electricity pricing can be used to shift the timing of electricity demand, but the choice of price signals is highly constrained. Consumer rates are updated every few years and limited to simple daily profiles, yet must capture the complex dynamics of a changing electricity system. Emission factors (EFs) were developed as an evaluation tool, but are increasingly used as demand response (DR) signals. Given these constraints, can they be effective? We evaluate the emissions impact of EF-based electricity rates with and without supply-side emissions pricing. We study controlled electric vehicle (EV) charging in the Western U.S. up to 2037 by coupling an electricity system dispatch model and a data-driven EV charging model. We compare average and short-run marginal EFs with a new medium-run marginal EF that better matches the timeline of electricity rate updates. We find that a stable supply-side signal makes DR more valuable: DR reduces emissions by up to 6% with supply-side carbon pricing or just 2% without it. Medium-run marginal EFs yield the most consistent emission reductions, but constraints on charging flexibility limit their impact. We recommend policymakers base rates for DR on medium-run marginal emission factors and implement supply-side carbon pricing to facilitate greater emission reductions. Energy Policy, 190 ISSN:0301-4215
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2024.114131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:NSF | Graduate Research Fellows...NSF| Graduate Research Fellowship Program (GRFP)Authors: Evan D. Sherwin; Max Henrion; Inês M. L. Azevedo;Long-term projections of energy consumption, supply and prices heavily influence decisions regarding long-lived energy infrastructure. Predicting the evolution of these quantities over multiple years to decades is a difficult task. Here, we estimate year-on-year volatility and unpredictability over multi-decade time frames for many quantities in the US energy system using historical projections. We determine the distribution over time of the most extreme projection errors (unpredictability) from 1985 to 2014, and the largest year-over-year changes (volatility) in the quantities themselves from 1949 to 2014. Our results show that both volatility and unpredictability have increased in the past decade, compared to the three and two decades before it. These findings may be useful for energy decision-makers to consider as they invest in and regulate long-lived energy infrastructure in a deeply uncertain world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0121-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0121-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:NSF | Graduate Research Fellows...NSF| Graduate Research Fellowship Program (GRFP)Authors: Evan D. Sherwin; Max Henrion; Inês M. L. Azevedo;Long-term projections of energy consumption, supply and prices heavily influence decisions regarding long-lived energy infrastructure. Predicting the evolution of these quantities over multiple years to decades is a difficult task. Here, we estimate year-on-year volatility and unpredictability over multi-decade time frames for many quantities in the US energy system using historical projections. We determine the distribution over time of the most extreme projection errors (unpredictability) from 1985 to 2014, and the largest year-over-year changes (volatility) in the quantities themselves from 1949 to 2014. Our results show that both volatility and unpredictability have increased in the past decade, compared to the three and two decades before it. These findings may be useful for energy decision-makers to consider as they invest in and regulate long-lived energy infrastructure in a deeply uncertain world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0121-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0121-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Evan D. Sherwin; Max Henrion; Inês M. L. Azevedo;In the version of this Analysis originally published, the key for the size frequency in Fig. 4 was erroneously switched, and should have read 5% for the small black dot, and 50% for the large black dot. This has now been amended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Evan D. Sherwin; Max Henrion; Inês M. L. Azevedo;In the version of this Analysis originally published, the key for the size frequency in Fig. 4 was erroneously switched, and should have read 5% for the small black dot, and 50% for the large black dot. This has now been amended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER:Open-Source Data A...NSF| CAREER:Open-Source Data Analytics for Distribution Systems Management and OperationsSiobhan Powell; Gustavo Vianna Cezar; Liang Min; Inês M. L. Azevedo; Ram Rajagopal;AbstractElectric vehicles will contribute to emissions reductions in the United States, but their charging may challenge electricity grid operations. We present a data-driven, realistic model of charging demand that captures the diverse charging behaviours of future adopters in the US Western Interconnection. We study charging control and infrastructure build-out as critical factors shaping charging load and evaluate grid impact under rapid electric vehicle adoption with a detailed economic dispatch model of 2035 generation. We find that peak net electricity demand increases by up to 25% with forecast adoption and by 50% in a stress test with full electrification. Locally optimized controls and high home charging can strain the grid. Shifting instead to uncontrolled, daytime charging can reduce storage requirements, excess non-fossil fuel generation, ramping and emissions. Our results urge policymakers to reflect generation-level impacts in utility rates and deploy charging infrastructure that promotes a shift from home to daytime charging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 153 citations 153 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER:Open-Source Data A...NSF| CAREER:Open-Source Data Analytics for Distribution Systems Management and OperationsSiobhan Powell; Gustavo Vianna Cezar; Liang Min; Inês M. L. Azevedo; Ram Rajagopal;AbstractElectric vehicles will contribute to emissions reductions in the United States, but their charging may challenge electricity grid operations. We present a data-driven, realistic model of charging demand that captures the diverse charging behaviours of future adopters in the US Western Interconnection. We study charging control and infrastructure build-out as critical factors shaping charging load and evaluate grid impact under rapid electric vehicle adoption with a detailed economic dispatch model of 2035 generation. We find that peak net electricity demand increases by up to 25% with forecast adoption and by 50% in a stress test with full electrification. Locally optimized controls and high home charging can strain the grid. Shifting instead to uncontrolled, daytime charging can reduce storage requirements, excess non-fossil fuel generation, ramping and emissions. Our results urge policymakers to reflect generation-level impacts in utility rates and deploy charging infrastructure that promotes a shift from home to daytime charging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 153 citations 153 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01105-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:IOP Publishing Aniruddh Mohan; Shayak Sengupta; Parth Vaishnav; Rahul Tongia; Asim Ahmed; Inês L Azevedo;Abstract Unabated coal power in India must be phased out by mid-century to achieve global climate targets under the Paris Agreement. Here we estimate the costs of hybrid power plants—lithium-ion battery storage with wind and solar PV—to replace coal generation. We design least cost mixes of these technologies to supply stylized baseload and load-following generation profiles in three Indian states—Karnataka, Gujarat, and Tamil Nadu. Our analysis shows that availability of low cost capital, solar PV capital costs of at least $250 kW−1, and battery storage capacity costs at least 50% cheaper than current levels will be required to phase out existing coal power plants. Phaseout by 2040 requires a 6% annual decline in the levelized cost of hybrid systems over the next two decades. We find that replacing coal generation with hybrid systems 99% of the hours over multiple decades is roughly 40% cheaper than 100% replacement, indicating a key role for other low cost grid flexibility mechanisms to help hasten coal phaseout. Solar PV is more suited to pairing with short duration storage than wind power. Overall, our results describe the challenging technological and policy advances needed to achieve the temperature goals of the Paris Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac98d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac98d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:IOP Publishing Aniruddh Mohan; Shayak Sengupta; Parth Vaishnav; Rahul Tongia; Asim Ahmed; Inês L Azevedo;Abstract Unabated coal power in India must be phased out by mid-century to achieve global climate targets under the Paris Agreement. Here we estimate the costs of hybrid power plants—lithium-ion battery storage with wind and solar PV—to replace coal generation. We design least cost mixes of these technologies to supply stylized baseload and load-following generation profiles in three Indian states—Karnataka, Gujarat, and Tamil Nadu. Our analysis shows that availability of low cost capital, solar PV capital costs of at least $250 kW−1, and battery storage capacity costs at least 50% cheaper than current levels will be required to phase out existing coal power plants. Phaseout by 2040 requires a 6% annual decline in the levelized cost of hybrid systems over the next two decades. We find that replacing coal generation with hybrid systems 99% of the hours over multiple decades is roughly 40% cheaper than 100% replacement, indicating a key role for other low cost grid flexibility mechanisms to help hasten coal phaseout. Solar PV is more suited to pairing with short duration storage than wind power. Overall, our results describe the challenging technological and policy advances needed to achieve the temperature goals of the Paris Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac98d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac98d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Shayak Sengupta; Thomas Spencer; Neshwin Rodrigues; Raghav Pachouri; Shubham Thakare; Peter J. Adams; Rahul Tongia; Inês M. L. Azevedo;pmid: 35748433
Emission factors from Indian electricity remain poorly characterized, despite known spatial and temporal variability. Limited publicly available emissions and generation data at sufficient detail make it difficult to understand the consequences of emissions to climate change and air pollution, potentially missing cost-effective policy designs for the world's third largest power grid. We use reduced-form and full-form power dispatch models to quantify current (2017-2018) and future (2030-2031) marginal CO2, SO2, NOX, and PM2.5 emission factors from Indian power generation. These marginal emissions represent emissions changes due to small changes in demand. For 2017-2018, spatial variability in marginal CO2 emission factors range 3 orders of magnitude across India's states. There is limited seasonal and intraday variability with coal generation likely to meet changes in demand more than half the time in more than half of the states. Assuming the Government of India approximate 2030 targets, the median marginal CO2 emission factor across states decreases by approximately a factor of 2, but emission factors still span 3 orders of magnitude across states. Under 2030-2031 assumptions there is greater seasonal and intraday variability by up to factors of two and four, respectively. Estimates provide emission factors to evaluate interventions such as electric vehicles, increased air conditioning, and energy efficiency.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c07500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c07500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Shayak Sengupta; Thomas Spencer; Neshwin Rodrigues; Raghav Pachouri; Shubham Thakare; Peter J. Adams; Rahul Tongia; Inês M. L. Azevedo;pmid: 35748433
Emission factors from Indian electricity remain poorly characterized, despite known spatial and temporal variability. Limited publicly available emissions and generation data at sufficient detail make it difficult to understand the consequences of emissions to climate change and air pollution, potentially missing cost-effective policy designs for the world's third largest power grid. We use reduced-form and full-form power dispatch models to quantify current (2017-2018) and future (2030-2031) marginal CO2, SO2, NOX, and PM2.5 emission factors from Indian power generation. These marginal emissions represent emissions changes due to small changes in demand. For 2017-2018, spatial variability in marginal CO2 emission factors range 3 orders of magnitude across India's states. There is limited seasonal and intraday variability with coal generation likely to meet changes in demand more than half the time in more than half of the states. Assuming the Government of India approximate 2030 targets, the median marginal CO2 emission factor across states decreases by approximately a factor of 2, but emission factors still span 3 orders of magnitude across states. Under 2030-2031 assumptions there is greater seasonal and intraday variability by up to factors of two and four, respectively. Estimates provide emission factors to evaluate interventions such as electric vehicles, increased air conditioning, and energy efficiency.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c07500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c07500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Maninder P. S. Thind; Christopher W. Tessum; Inês L. Azevedo; Julian D. Marshall;pmid: 31746196
Electricity generation is a large contributor to fine particulate matter (PM2.5) air pollution. However, the demographic distribution of the resulting exposure is largely unknown. We estimate exposures to and health impacts of PM2.5 from electricity generation in the US, for each of the seven Regional Transmission Organizations (RTOs), for each US state, by income and by race. We find that average exposures are the highest for blacks, followed by non-Latino whites. Exposures for remaining groups (e.g., Asians, Native Americans, Latinos) are somewhat lower. Disparities by race/ethnicity are observed for each income category, indicating that the racial/ethnic differences hold even after accounting for differences in income. Levels of disparity differ by state and RTO. Exposures are higher for lower-income than for higher-income, but disparities are larger by race than by income. Geographically, we observe large differences between where electricity is generated and where people experience the resulting PM2.5 health consequences; some states are net exporters of health impacts, other are net importers. For 36 US states, most of the health impacts are attributable to emissions in other states. Most of the total impacts are attributable to coal rather than other fuels.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Maninder P. S. Thind; Christopher W. Tessum; Inês L. Azevedo; Julian D. Marshall;pmid: 31746196
Electricity generation is a large contributor to fine particulate matter (PM2.5) air pollution. However, the demographic distribution of the resulting exposure is largely unknown. We estimate exposures to and health impacts of PM2.5 from electricity generation in the US, for each of the seven Regional Transmission Organizations (RTOs), for each US state, by income and by race. We find that average exposures are the highest for blacks, followed by non-Latino whites. Exposures for remaining groups (e.g., Asians, Native Americans, Latinos) are somewhat lower. Disparities by race/ethnicity are observed for each income category, indicating that the racial/ethnic differences hold even after accounting for differences in income. Levels of disparity differ by state and RTO. Exposures are higher for lower-income than for higher-income, but disparities are larger by race than by income. Geographically, we observe large differences between where electricity is generated and where people experience the resulting PM2.5 health consequences; some states are net exporters of health impacts, other are net importers. For 36 US states, most of the health impacts are attributable to emissions in other states. Most of the total impacts are attributable to coal rather than other fuels.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Thomas A. Deetjen; Inês L. Azevedo;pmid: 31436968
This study develops a reduced-order power plant dispatch model and uses it to simulate marginal emissions factors (MEFs) for the 2014-2017 United States (U.S.) electric grid at the North American Electric Reliability Corporation (NERC) regional level. MEFs help quantify the health, environmental, and climate change impacts caused by changes in marginal net electricity consumption, which could result, for example, from new technologies or policies. This study develops the model, validates it against historical data, and compares its simulated MEFs against historically derived regression-based MEFs. Our method accurately reproduces CO2, SO2, and NOx emissions for multiple U.S. NERC regions and years and enables us to analyze future scenarios that are absent from the historical data. Though historically derived regression-based MEFs are generally more accurate, our simulated MEFs provide a more nuanced picture of how clusters of low- or high-emitting power plants of similar production cost create large swings in MEFs throughout the day. Policymakers could use these dynamic MEFs to target demand-reduction strategies at high-emissions portions of the power plant merit order.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Thomas A. Deetjen; Inês L. Azevedo;pmid: 31436968
This study develops a reduced-order power plant dispatch model and uses it to simulate marginal emissions factors (MEFs) for the 2014-2017 United States (U.S.) electric grid at the North American Electric Reliability Corporation (NERC) regional level. MEFs help quantify the health, environmental, and climate change impacts caused by changes in marginal net electricity consumption, which could result, for example, from new technologies or policies. This study develops the model, validates it against historical data, and compares its simulated MEFs against historically derived regression-based MEFs. Our method accurately reproduces CO2, SO2, and NOx emissions for multiple U.S. NERC regions and years and enables us to analyze future scenarios that are absent from the historical data. Though historically derived regression-based MEFs are generally more accurate, our simulated MEFs provide a more nuanced picture of how clusters of low- or high-emitting power plants of similar production cost create large swings in MEFs throughout the day. Policymakers could use these dynamic MEFs to target demand-reduction strategies at high-emissions portions of the power plant merit order.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b02500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu