- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Netherlands, Netherlands, Netherlands, Netherlands, FrancePublisher:Wiley Funded by:NSF | Belmont Forum Collaborati..., AKA | Novel perspectives for bi..., AKA | Changes in species commun... +2 projectsNSF| Belmont Forum Collaborative Research: Conservation policy in a changing world: integrating citizen science data from national monitoring schemes to model impacts of global change s ,AKA| Novel perspectives for biodiversity conservation in farmland from global priorities to local solutions ,AKA| Changes in species communities: role of climate change, human land use and community complexity ,AKA| Conservation policy in a changing world: intergrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,AKA| The combined effect of climate change and habitat protection on population changes and range shifts in birdsSergi Herrando; Andrea Santangeli; Päivi M. Sirkiä; Alison Johnston; Alison Johnston; Marie-Anne R. Hudson; Emma-Liina Marjakangas; Charlotte M. Moshøj; Chris A. M. van Turnhout; Nicole L. Michel; Romain Lorrillière; Romain Lorrillière; Åke Lindström; Renno Nellis; Jaanus Elts; Ruud P. B. Foppen; Tibor Szép; Lluís Brotons; Vincent Devictor; Adam C. Smith; Henning Heldbjerg; Aleksi Lehikoinen; Jean-Yves Paquet; Frédéric Jiguet; Marc Herremans;Abstract Global climate change is driving species' distributions towards the poles and mountain tops during both non‐breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate‐driven community shifts has not been thoroughly investigated at large spatial scales. We compared the rates of change in the community composition during both winter (non‐breeding season) and summer (breeding) and their relation to temperature changes. Based on continental‐scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980–2016. CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site‐faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long‐term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons. Our results were broadly consistent across continents, suggesting some climate‐driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate‐driven impacts during the less‐studied non‐breeding season.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03424070Data sources: Bielefeld Academic Search Engine (BASE)Journal of Animal EcologyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallJournal of Animal EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03424070Data sources: Bielefeld Academic Search Engine (BASE)Journal of Animal EcologyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallJournal of Animal EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 SpainPublisher:Wiley Funded by:EC | NEWFORESTSEC| NEWFORESTSAitor Ameztegui; Lluís Coll; Lluís Brotons; Lluís Brotons; Josep M. Ninot;doi: 10.1111/geb.12407
handle: 10459.1/65151
AbstractAimTo assess the effects of climate change, past land uses and physiography on the current position of the tree line in the Catalan Pyrenees and its dynamics between 1956 and 2006.LocationMore than 1000 linear kilometres of sub‐alpine tree line in the Catalan Pyrenees (north‐east Spain)MethodsUsing aerial photographs and supervised classification, we reclassified the images into a binary raster with ‘tree’ and ‘non‐tree’ values, and determined canopy cover in 1956 and 2006. We then determined the change in position of the tree line between 1956 and 2006 based on changes in forest cover. We used the distance from the position of the tree line in 1956 to the theoretical potential tree line – determined from interpretation of aerial photographs, identifying the highest old remnants of forest for homogeneous areas of the landscape in terms of bioclimatic conditions, bedrock, landform and exposure – as a surrogate of intensity of past land uses.ResultsOur analyses showed that the Pyrenean tree line has moved upwards on average almost 40 m (mean advance ± SE: 35.3 ± 0.5 m, P < 0.001), although in most cases it has remained unchanged (61.8%) or advanced moderately, i.e. between 25 and 100 m (23.7%); only 9.2% of the locations have advanced more than 100 m. Upward shifts of the tree line were significantly larger in locations heavily modified in the past by anthropogenic disturbance (mean advance 50.8 ± 1.1 m) compared with near natural tree line locations (19.7 ± 0.8 m, P < 0.001), where the mean displacement was much lower than expected and was not related to changes in temperature along the study period.Main conclusionsOur results stress the impact of the cessation of human activity in driving forest dynamics at the tree line in the Catalan Pyrenees, and reveal a very low or even negligible signal of climate change in the study area.
Global Ecology and B... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/geb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/geb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 South Africa, Spain, Australia, Spain, Spain, Spain, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:EC | FIRESCAPE, ARC | Linkage Projects - Grant ...EC| FIRESCAPE ,ARC| Linkage Projects - Grant ID: LP150100765Authors: Julianna L. Santos; Katherine M. Giljohann; Catherine L. Parr; Catherine L. Parr; +29 AuthorsJulianna L. Santos; Katherine M. Giljohann; Catherine L. Parr; Catherine L. Parr; Catherine L. Parr; Robert E. Keane; Annabel L. Smith; Annabel L. Smith; Mike Clarke; Sally Archibald; Sally Archibald; Libby Rumpff; Lluís Brotons; Lluís Brotons; Alejandra Morán-Ordóñez; Sergi Herrando; Stephen T. Buckland; Adrián Regos; Alexandra D. Syphard; Virgilio Hermoso; Luke T. Kelly; Trent D. Penman; Frank K. Lake; Juli G. Pausas; Marie-Josée Fortin; Michael A. McCarthy; Andrea Duane; Morgan W. Tingley; Enric Batllori; Enric Batllori; Núria Aquilué; Quim Canelles; Andrew F. Bennett;pmid: 33214246
handle: 10459.1/70684 , 10023/21109 , 11343/290576 , 2263/79464
Fire's growing impacts on ecosystems Fire has played a prominent role in the evolution of biodiversity and is a natural factor shaping many ecological communities. However, the incidence of fire has been exacerbated by human activity, and this is now affecting ecosystems and habitats that have never been fire prone or fire adapted. Kelly et al. review how such changes are already threatening species with extinction and transforming terrestrial ecosystems and discuss the trends causing changes in fire regimes. They also consider actions that could be taken by conservationists and policy-makers to help sustain biodiversity in a time of changing fire activity. Science , this issue p. eabb0355
Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of St Andrews: Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abb0355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 365 citations 365 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 47visibility views 47 download downloads 431 Powered bymore_vert Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of St Andrews: Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abb0355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 SpainPublisher:Public Library of Science (PLoS) Authors: Clavero Pineda, Miguel; Villero, Daniel; Brotons, Lluís;Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0018581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 78visibility views 78 download downloads 111 Powered bymore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0018581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Croatia, Netherlands, Sweden, Netherlands, Croatia, Netherlands, United Kingdom, Austria, Norway, FinlandPublisher:IOP Publishing Funded by:AKA | Conservation policy in a ..., AKA | Conservation policy in a ..., RCN | BiodivERsA: Integrating c...AKA| Conservation policy in a changing world: intergrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,AKA| Conservation policy in a changing world: Integrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,RCN| BiodivERsA: Integrating citizen science data from national monitoring schemes to predict the impacts of global change scenarios on birdsAlaaeldin Soultan; Diego Pavón-Jordán; Ute Bradter; Brett K Sandercock; Wesley M Hochachka; Alison Johnston; Jon Brommer; Elie Gaget; Verena Keller; Peter Knaus; Karen Aghababyan; Qenan Maxhuni; Alexandre Vintchevski; Károly Nagy; Liutauras Raudonikis; Dawn Balmer; David Noble; Domingos Leitão; Ingar Jostein Øien; Paul Shimmings; Elchin Sultanov; Brian Caffrey; Kerem Boyla; Dimitrije Radišić; Åke Lindström; Metodija Velevski; Clara Pladevall; Lluís Brotons; Šťastný Karel; Draženko Z Rajković; Tomasz Chodkiewicz; Tomasz Wilk; Tibor Szép; Chris van Turnhout; Ruud Foppen; Ian Burfield; Thomas Vikstrøm; Vlatka Dumbović Mazal; Mark Eaton; Petr Vorisek; Aleksi Lehikoinen; Sergi Herrando; Tatiana Kuzmenko; Hans-Günther Bauer; Mikhail V Kalyakin; Olga V Voltzit; Jovica Sjeničić; Tomas Pärt;Abstract Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s–2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr−1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr−1. Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to ‘climate debt’. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds’ resilience to the expected environmental changes in the future.
SLU publication data... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24883Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryhttps://www.scopus.com/inward/...Article . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac4ebe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24883Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryhttps://www.scopus.com/inward/...Article . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac4ebe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Spain, Spain, Spain, Canada, Spain, SpainPublisher:Public Library of Science (PLoS) Brotons, Lluís; Aquilué, Núria; De Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew;Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2013License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaSimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0062392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2013License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaSimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0062392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Spain, United StatesPublisher:Wiley Doblas‐Miranda, E; Martínez‐Vilalta, J; Lloret, F; Álvarez, A; Ávila, A; Bonet, FJ; Brotons, L; Castro, J; Yuste, J Curiel; Díaz, M; Ferrandis, P; García‐Hurtado, E; Iriondo, JM; Keenan, TF; Latron, J; Llusià, J; Loepfe, L; Mayol, M; Moré, G; Moya, D; Peñuelas, J; Pons, X; Poyatos, R; Sardans, J; Sus, O; Vallejo, VR; Vayreda, J; Retana, J;doi: 10.1111/geb.12224
handle: 10261/151456
AbstractAimMediterranean terrestrial ecosystems serve as reference laboratories for the investigation of global change because of their transitional climate, the high spatiotemporal variability of their environmental conditions, a rich and unique biodiversity and a wide range of socio‐economic conditions. As scientific development and environmental pressures increase, it is increasingly necessary to evaluate recent progress and to challenge research priorities in the face of global change.LocationMediterranean terrestrial ecosystems.MethodsThis article revisits the research priorities proposed in a 1998 assessment.ResultsA new set of research priorities is proposed: (1) to establish the role of the landscape mosaic on fire‐spread; (2) to further research the combined effect of different drivers on pest expansion; (3) to address the interaction between drivers of global change and recent forest management practices; (4) to obtain more realistic information on the impacts of global change and ecosystem services; (5) to assess forest mortality events associated with climatic extremes; (6) to focus global change research on identifying and managing vulnerable areas; (7) to use the functional traits concept to study resilience after disturbance; (8) to study the relationship between genotypic and phenotypic diversity as a source of forest resilience; (9) to understand the balance betweenCstorage and water resources; (10) to analyse the interplay between landscape‐scale processes and biodiversity conservation; (11) to refine models by including interactions between drivers and socio‐economic contexts; (12) to understand forest–atmosphere feedbacks; (13) to represent key mechanisms linking plant hydraulics with landscape hydrology.Main conclusions(1) The interactive nature of different global change drivers remains poorly understood. (2) There is a critical need for the rapid development of regional‐ and global‐scale models that are more tightly connected with large‐scale experiments, data networks and management practice. (3) More attention should be directed to drought‐related forest decline and the current relevance of historical land use.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7pp4z92fData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Ecology and BiogeographyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 51visibility views 51 download downloads 38 Powered bymore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7pp4z92fData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Ecology and BiogeographyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Emma‐Liina Marjakangas; Laura Bosco; Martijn Versluijs; Yanjie Xu; Andrea Santangeli; Sari Holopainen; Sanna Mäkeläinen; Sergi Herrando; Véréna Keller; Petr Voříšek; Lluís Brotóns; Alison Johnston; Karine Princé; Stephen G. Willis; Karen Aghababyan; Vitalie Ajder; Dawn E. Balmer; Taulant Bino; Kerem Ali Boyla; Tomasz Chodkiewicz; Juan Carlos del Moral; Vlatka Dumbović Mazal; Alessandro Ferrarini; Carlos Godinho; Marco Gustin; Peter Knaus; Tatiana Kuzmenko; Åke Lindström; Qenan Maxhuni; Blas Molina; K. Nagy; Dimitrije Radišić; Saša Rajkov; Draženko Rajković; Liutauras Raudonikis; Jovica Sjeničić; Stoycho Stoychev; Tibor Szép; Norbert Teufelbauer; Silvia Ursul; Chris van Turnhout; Metodija Velevski; Thomas Vikstrøm; Tomasz Wilk; Olga Voltzit; Ingar Jostein Øien; Aleksi Lehikoinen;Abstract Species’ range shifts and local extinctions caused by global change lead to community composition changes. At large spatial scales, ecological barriers, such as biome boundaries, coastlines, elevation, and temperature gradients, can influence a community's ability to shift. Yet, ecological barriers are rarely considered in global change studies, potentially hindering predictions of biodiversity shifts. We used data from two consecutive European breeding bird atlases to calculate the geographic distance and direction between communities in the 1980's and their nearest compositional equivalent in the 2010’s and modelled their response to barriers. The ecological barriers affected both the distance and direction of bird community composition shifts, with coasts and elevation having the strongest influence. Combining ecological barriers and community shift projections can identify ecological corridors that facilitate shifts of species and communities under global change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1347347/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1347347/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Public Library of Science (PLoS) Funded by:EC | SCALESEC| SCALESAuthors: Brotons, Lluís;In this work, I evaluate the impact of species distribution models (SDMs) on the current status of environmental and ecological journals by asking the question to which degree development of SDMs in the literature is related to recent changes in the impact factors of ecological journals. The hypothesis evaluated states that research fronts are likely to attract research attention and potentially drive citation patterns, with journals concentrating papers related to the research front receiving more attention and benefiting from faster increases in their impact on the ecological literature. My results indicate a positive relationship between the number of SDM related articles published in a journal and its impact factor (IF) growth during the period 2000-09. However, the percentage of SDM related papers in a journal was strongly and positively associated with the percentage of papers on climate change and statistical issues. The results support the hypothesis that global change science has been critical in the development of SDMs and that interest in climate change research in particular, rather than the usage of SDM per se, appears as an important factor behind journal IF increases in ecology and environmental sciences. Finally, our results on SDM application in global change science support the view that scientific interest rather than methodological fashion appears to be the major driver of research attraction in the scientific literature.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0111996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0111996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Authors: Lluís Brotons; Andrea Duane;doi: 10.3390/fire2010008
Recent studies have explored the use of simple correlative models to project changes in future burnt areas (BAs) around the globe. However, estimates of future fire danger suffer from the critical shortcoming that feedbacks on climate change effects on vegetation are not explicitly included in purely correlative approaches causing potential major unknown biases on BA projections. In a recent application of this approach led by Marco Turco and co-workers in the journal Nature Communications (doi:10.1038/s41467-018-06358-z), a simple correlative model was used to project an increase in future burnt areas for the Mediterranean region. The authors related BAs to regional estimates of cumulative drought surrogates, and later used this relationship to infer changes derived from future climate data. To account for negative climate-vegetation feedback on fire regimes, they used regional variability in the BA–drought relationship. The main assumption behind the approach used was that fire–drought relationships currently measured under a given productivity gradient (i.e., sensitivity of fire activity to dry periods is stronger in cooler/productive sites) can be consistently used to infer new relationships arising in the future. While representing a step forward in acknowledging the pitfalls of current projections of BAs, this short-cut falls short in allowing to account for the key process behind climate–vegetation-fire feedbacks. We argue that a series of mechanisms, ranging from the dynamic nature of fire–drought relationships to the human influences they experience, do not ensure that these relationships are to be maintained in the future with major, overall still unknown, consequences on future fire danger projections. Resolving this challenge will greatly benefit from the development of mechanistic approaches that explicitly consider the processes by which vegetation changes derived from climate influence fire regimes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fire2010008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fire2010008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Netherlands, Netherlands, Netherlands, Netherlands, FrancePublisher:Wiley Funded by:NSF | Belmont Forum Collaborati..., AKA | Novel perspectives for bi..., AKA | Changes in species commun... +2 projectsNSF| Belmont Forum Collaborative Research: Conservation policy in a changing world: integrating citizen science data from national monitoring schemes to model impacts of global change s ,AKA| Novel perspectives for biodiversity conservation in farmland from global priorities to local solutions ,AKA| Changes in species communities: role of climate change, human land use and community complexity ,AKA| Conservation policy in a changing world: intergrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,AKA| The combined effect of climate change and habitat protection on population changes and range shifts in birdsSergi Herrando; Andrea Santangeli; Päivi M. Sirkiä; Alison Johnston; Alison Johnston; Marie-Anne R. Hudson; Emma-Liina Marjakangas; Charlotte M. Moshøj; Chris A. M. van Turnhout; Nicole L. Michel; Romain Lorrillière; Romain Lorrillière; Åke Lindström; Renno Nellis; Jaanus Elts; Ruud P. B. Foppen; Tibor Szép; Lluís Brotons; Vincent Devictor; Adam C. Smith; Henning Heldbjerg; Aleksi Lehikoinen; Jean-Yves Paquet; Frédéric Jiguet; Marc Herremans;Abstract Global climate change is driving species' distributions towards the poles and mountain tops during both non‐breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate‐driven community shifts has not been thoroughly investigated at large spatial scales. We compared the rates of change in the community composition during both winter (non‐breeding season) and summer (breeding) and their relation to temperature changes. Based on continental‐scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980–2016. CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site‐faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long‐term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons. Our results were broadly consistent across continents, suggesting some climate‐driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate‐driven impacts during the less‐studied non‐breeding season.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03424070Data sources: Bielefeld Academic Search Engine (BASE)Journal of Animal EcologyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallJournal of Animal EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03424070Data sources: Bielefeld Academic Search Engine (BASE)Journal of Animal EcologyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallJournal of Animal EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 SpainPublisher:Wiley Funded by:EC | NEWFORESTSEC| NEWFORESTSAitor Ameztegui; Lluís Coll; Lluís Brotons; Lluís Brotons; Josep M. Ninot;doi: 10.1111/geb.12407
handle: 10459.1/65151
AbstractAimTo assess the effects of climate change, past land uses and physiography on the current position of the tree line in the Catalan Pyrenees and its dynamics between 1956 and 2006.LocationMore than 1000 linear kilometres of sub‐alpine tree line in the Catalan Pyrenees (north‐east Spain)MethodsUsing aerial photographs and supervised classification, we reclassified the images into a binary raster with ‘tree’ and ‘non‐tree’ values, and determined canopy cover in 1956 and 2006. We then determined the change in position of the tree line between 1956 and 2006 based on changes in forest cover. We used the distance from the position of the tree line in 1956 to the theoretical potential tree line – determined from interpretation of aerial photographs, identifying the highest old remnants of forest for homogeneous areas of the landscape in terms of bioclimatic conditions, bedrock, landform and exposure – as a surrogate of intensity of past land uses.ResultsOur analyses showed that the Pyrenean tree line has moved upwards on average almost 40 m (mean advance ± SE: 35.3 ± 0.5 m, P < 0.001), although in most cases it has remained unchanged (61.8%) or advanced moderately, i.e. between 25 and 100 m (23.7%); only 9.2% of the locations have advanced more than 100 m. Upward shifts of the tree line were significantly larger in locations heavily modified in the past by anthropogenic disturbance (mean advance 50.8 ± 1.1 m) compared with near natural tree line locations (19.7 ± 0.8 m, P < 0.001), where the mean displacement was much lower than expected and was not related to changes in temperature along the study period.Main conclusionsOur results stress the impact of the cessation of human activity in driving forest dynamics at the tree line in the Catalan Pyrenees, and reveal a very low or even negligible signal of climate change in the study area.
Global Ecology and B... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/geb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/geb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 South Africa, Spain, Australia, Spain, Spain, Spain, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:EC | FIRESCAPE, ARC | Linkage Projects - Grant ...EC| FIRESCAPE ,ARC| Linkage Projects - Grant ID: LP150100765Authors: Julianna L. Santos; Katherine M. Giljohann; Catherine L. Parr; Catherine L. Parr; +29 AuthorsJulianna L. Santos; Katherine M. Giljohann; Catherine L. Parr; Catherine L. Parr; Catherine L. Parr; Robert E. Keane; Annabel L. Smith; Annabel L. Smith; Mike Clarke; Sally Archibald; Sally Archibald; Libby Rumpff; Lluís Brotons; Lluís Brotons; Alejandra Morán-Ordóñez; Sergi Herrando; Stephen T. Buckland; Adrián Regos; Alexandra D. Syphard; Virgilio Hermoso; Luke T. Kelly; Trent D. Penman; Frank K. Lake; Juli G. Pausas; Marie-Josée Fortin; Michael A. McCarthy; Andrea Duane; Morgan W. Tingley; Enric Batllori; Enric Batllori; Núria Aquilué; Quim Canelles; Andrew F. Bennett;pmid: 33214246
handle: 10459.1/70684 , 10023/21109 , 11343/290576 , 2263/79464
Fire's growing impacts on ecosystems Fire has played a prominent role in the evolution of biodiversity and is a natural factor shaping many ecological communities. However, the incidence of fire has been exacerbated by human activity, and this is now affecting ecosystems and habitats that have never been fire prone or fire adapted. Kelly et al. review how such changes are already threatening species with extinction and transforming terrestrial ecosystems and discuss the trends causing changes in fire regimes. They also consider actions that could be taken by conservationists and policy-makers to help sustain biodiversity in a time of changing fire activity. Science , this issue p. eabb0355
Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of St Andrews: Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abb0355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 365 citations 365 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 47visibility views 47 download downloads 431 Powered bymore_vert Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of St Andrews: Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abb0355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 SpainPublisher:Public Library of Science (PLoS) Authors: Clavero Pineda, Miguel; Villero, Daniel; Brotons, Lluís;Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0018581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 78visibility views 78 download downloads 111 Powered bymore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0018581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Croatia, Netherlands, Sweden, Netherlands, Croatia, Netherlands, United Kingdom, Austria, Norway, FinlandPublisher:IOP Publishing Funded by:AKA | Conservation policy in a ..., AKA | Conservation policy in a ..., RCN | BiodivERsA: Integrating c...AKA| Conservation policy in a changing world: intergrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,AKA| Conservation policy in a changing world: Integrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,RCN| BiodivERsA: Integrating citizen science data from national monitoring schemes to predict the impacts of global change scenarios on birdsAlaaeldin Soultan; Diego Pavón-Jordán; Ute Bradter; Brett K Sandercock; Wesley M Hochachka; Alison Johnston; Jon Brommer; Elie Gaget; Verena Keller; Peter Knaus; Karen Aghababyan; Qenan Maxhuni; Alexandre Vintchevski; Károly Nagy; Liutauras Raudonikis; Dawn Balmer; David Noble; Domingos Leitão; Ingar Jostein Øien; Paul Shimmings; Elchin Sultanov; Brian Caffrey; Kerem Boyla; Dimitrije Radišić; Åke Lindström; Metodija Velevski; Clara Pladevall; Lluís Brotons; Šťastný Karel; Draženko Z Rajković; Tomasz Chodkiewicz; Tomasz Wilk; Tibor Szép; Chris van Turnhout; Ruud Foppen; Ian Burfield; Thomas Vikstrøm; Vlatka Dumbović Mazal; Mark Eaton; Petr Vorisek; Aleksi Lehikoinen; Sergi Herrando; Tatiana Kuzmenko; Hans-Günther Bauer; Mikhail V Kalyakin; Olga V Voltzit; Jovica Sjeničić; Tomas Pärt;Abstract Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s–2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr−1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr−1. Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to ‘climate debt’. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds’ resilience to the expected environmental changes in the future.
SLU publication data... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24883Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryhttps://www.scopus.com/inward/...Article . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac4ebe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24883Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research Repositoryhttps://www.scopus.com/inward/...Article . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac4ebe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Spain, Spain, Spain, Canada, Spain, SpainPublisher:Public Library of Science (PLoS) Brotons, Lluís; Aquilué, Núria; De Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew;Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2013License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaSimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0062392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2013License: CC BYData sources: Diposit Digital de Documents de la UABResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaSimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2013Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0062392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Spain, United StatesPublisher:Wiley Doblas‐Miranda, E; Martínez‐Vilalta, J; Lloret, F; Álvarez, A; Ávila, A; Bonet, FJ; Brotons, L; Castro, J; Yuste, J Curiel; Díaz, M; Ferrandis, P; García‐Hurtado, E; Iriondo, JM; Keenan, TF; Latron, J; Llusià, J; Loepfe, L; Mayol, M; Moré, G; Moya, D; Peñuelas, J; Pons, X; Poyatos, R; Sardans, J; Sus, O; Vallejo, VR; Vayreda, J; Retana, J;doi: 10.1111/geb.12224
handle: 10261/151456
AbstractAimMediterranean terrestrial ecosystems serve as reference laboratories for the investigation of global change because of their transitional climate, the high spatiotemporal variability of their environmental conditions, a rich and unique biodiversity and a wide range of socio‐economic conditions. As scientific development and environmental pressures increase, it is increasingly necessary to evaluate recent progress and to challenge research priorities in the face of global change.LocationMediterranean terrestrial ecosystems.MethodsThis article revisits the research priorities proposed in a 1998 assessment.ResultsA new set of research priorities is proposed: (1) to establish the role of the landscape mosaic on fire‐spread; (2) to further research the combined effect of different drivers on pest expansion; (3) to address the interaction between drivers of global change and recent forest management practices; (4) to obtain more realistic information on the impacts of global change and ecosystem services; (5) to assess forest mortality events associated with climatic extremes; (6) to focus global change research on identifying and managing vulnerable areas; (7) to use the functional traits concept to study resilience after disturbance; (8) to study the relationship between genotypic and phenotypic diversity as a source of forest resilience; (9) to understand the balance betweenCstorage and water resources; (10) to analyse the interplay between landscape‐scale processes and biodiversity conservation; (11) to refine models by including interactions between drivers and socio‐economic contexts; (12) to understand forest–atmosphere feedbacks; (13) to represent key mechanisms linking plant hydraulics with landscape hydrology.Main conclusions(1) The interactive nature of different global change drivers remains poorly understood. (2) There is a critical need for the rapid development of regional‐ and global‐scale models that are more tightly connected with large‐scale experiments, data networks and management practice. (3) More attention should be directed to drought‐related forest decline and the current relevance of historical land use.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7pp4z92fData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Ecology and BiogeographyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 51visibility views 51 download downloads 38 Powered bymore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7pp4z92fData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Ecology and BiogeographyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Emma‐Liina Marjakangas; Laura Bosco; Martijn Versluijs; Yanjie Xu; Andrea Santangeli; Sari Holopainen; Sanna Mäkeläinen; Sergi Herrando; Véréna Keller; Petr Voříšek; Lluís Brotóns; Alison Johnston; Karine Princé; Stephen G. Willis; Karen Aghababyan; Vitalie Ajder; Dawn E. Balmer; Taulant Bino; Kerem Ali Boyla; Tomasz Chodkiewicz; Juan Carlos del Moral; Vlatka Dumbović Mazal; Alessandro Ferrarini; Carlos Godinho; Marco Gustin; Peter Knaus; Tatiana Kuzmenko; Åke Lindström; Qenan Maxhuni; Blas Molina; K. Nagy; Dimitrije Radišić; Saša Rajkov; Draženko Rajković; Liutauras Raudonikis; Jovica Sjeničić; Stoycho Stoychev; Tibor Szép; Norbert Teufelbauer; Silvia Ursul; Chris van Turnhout; Metodija Velevski; Thomas Vikstrøm; Tomasz Wilk; Olga Voltzit; Ingar Jostein Øien; Aleksi Lehikoinen;Abstract Species’ range shifts and local extinctions caused by global change lead to community composition changes. At large spatial scales, ecological barriers, such as biome boundaries, coastlines, elevation, and temperature gradients, can influence a community's ability to shift. Yet, ecological barriers are rarely considered in global change studies, potentially hindering predictions of biodiversity shifts. We used data from two consecutive European breeding bird atlases to calculate the geographic distance and direction between communities in the 1980's and their nearest compositional equivalent in the 2010’s and modelled their response to barriers. The ecological barriers affected both the distance and direction of bird community composition shifts, with coasts and elevation having the strongest influence. Combining ecological barriers and community shift projections can identify ecological corridors that facilitate shifts of species and communities under global change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1347347/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1347347/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Public Library of Science (PLoS) Funded by:EC | SCALESEC| SCALESAuthors: Brotons, Lluís;In this work, I evaluate the impact of species distribution models (SDMs) on the current status of environmental and ecological journals by asking the question to which degree development of SDMs in the literature is related to recent changes in the impact factors of ecological journals. The hypothesis evaluated states that research fronts are likely to attract research attention and potentially drive citation patterns, with journals concentrating papers related to the research front receiving more attention and benefiting from faster increases in their impact on the ecological literature. My results indicate a positive relationship between the number of SDM related articles published in a journal and its impact factor (IF) growth during the period 2000-09. However, the percentage of SDM related papers in a journal was strongly and positively associated with the percentage of papers on climate change and statistical issues. The results support the hypothesis that global change science has been critical in the development of SDMs and that interest in climate change research in particular, rather than the usage of SDM per se, appears as an important factor behind journal IF increases in ecology and environmental sciences. Finally, our results on SDM application in global change science support the view that scientific interest rather than methodological fashion appears to be the major driver of research attraction in the scientific literature.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0111996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0111996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Authors: Lluís Brotons; Andrea Duane;doi: 10.3390/fire2010008
Recent studies have explored the use of simple correlative models to project changes in future burnt areas (BAs) around the globe. However, estimates of future fire danger suffer from the critical shortcoming that feedbacks on climate change effects on vegetation are not explicitly included in purely correlative approaches causing potential major unknown biases on BA projections. In a recent application of this approach led by Marco Turco and co-workers in the journal Nature Communications (doi:10.1038/s41467-018-06358-z), a simple correlative model was used to project an increase in future burnt areas for the Mediterranean region. The authors related BAs to regional estimates of cumulative drought surrogates, and later used this relationship to infer changes derived from future climate data. To account for negative climate-vegetation feedback on fire regimes, they used regional variability in the BA–drought relationship. The main assumption behind the approach used was that fire–drought relationships currently measured under a given productivity gradient (i.e., sensitivity of fire activity to dry periods is stronger in cooler/productive sites) can be consistently used to infer new relationships arising in the future. While representing a step forward in acknowledging the pitfalls of current projections of BAs, this short-cut falls short in allowing to account for the key process behind climate–vegetation-fire feedbacks. We argue that a series of mechanisms, ranging from the dynamic nature of fire–drought relationships to the human influences they experience, do not ensure that these relationships are to be maintained in the future with major, overall still unknown, consequences on future fire danger projections. Resolving this challenge will greatly benefit from the development of mechanistic approaches that explicitly consider the processes by which vegetation changes derived from climate influence fire regimes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fire2010008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fire2010008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu