- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Authors: Campi T.; Cruciani S.; Maradei F.; Feliziani M.;doi: 10.3390/en12183483
handle: 2108/324903 , 11573/1419400 , 11697/141315
A near-field wireless power transfer (WPT) technology is applied to recharge the battery of a small size drone. The WPT technology is an extremely attractive solution to build an autonomous base station where the drone can land to wirelessly charge the battery without any human intervention. The innovative WPT design is based on the use of a mechanical part of the drone, i.e., landing gear, as a portion of the electrical circuit, i.e., onboard secondary coil. To this aim, the landing gear is made with an adequately shaped aluminum pipe that, after suitable modifications, performs both structural and electrical functions. The proposed innovative solution has a very small impact on the drone aerodynamics and the additional weight onboard the drone is very limited. Once the design of the secondary coil has been defined, the configuration of the WPT primary coil mounted in a ground base station is optimized to get a good electrical performance, i.e., high values of transferred power and efficiency. The WPT design guidelines of primary and secondary coils are given. Finally, a demonstrator of the WPT system for a lightweight drone is designed, built, and tested.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3483/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3483/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Cruciani S.; Campi T.; Maradei F.; Feliziani M.;doi: 10.3390/en13102522
handle: 2108/324909 , 11573/1419390 , 11697/153286
An active coil system is proposed to shield the magnetic field produced by a dynamic wireless power transfer (WPT) system used to power electric vehicles (EVs) in motion. The considered dynamic WPT is based on an electrified road with many short-track pads. A sophisticated mathematical procedure is developed to optimize the design of the active coils configuration and their excitation. By the proposed approach, the resulting magnetic field is compliant with the reference levels (RLs) of the ICNIRP (International Commission on Non-Ionizing Radiation Protection) 2010 Guidelines inside the cabin of EVs and on the side of the electrified road.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2522/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: https://hdl.handle.net/2108/324909Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2522/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: https://hdl.handle.net/2108/324909Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Authors: Campi T.; Cruciani S.; Maradei F.; Feliziani M.;doi: 10.3390/en12091795
handle: 2108/324883 , 11573/1613223 , 11697/137634
The Society of Automotive Engineers (SAE) Recommended Practice (RP) J2954 (November 2017) was recently published to standardize the wireless power transfer (WPT) technology to recharge the battery of an electric vehicle (EV). The SAE J2954 RP establishes criteria for interoperability, electromagnetic compatibility (EMC), electromagnetic field (EMF) safety, etc. The aim of this study was to predict the magnetic field behavior inside and outside an EV during wireless charging using the design criteria of SAE RP J2954. Analyzing the worst case configurations of WPT coils and EV bodyshell by a sophisticated software tool based on the finite element method (FEM) that takes into account the field reflection and refraction of the metal EV bodyshell, it is possible to numerically assess the magnetic field levels in the environment. The investigation was performed considering the worst case configuration—a small city car with a Class 2 WPT system of 7.7 kVA with WPT coils with maximum admissible ground clearance and offset. The results showed that the reference level (RL) of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines in terms of magnetic flux density was exceeded under and beside the EV. To mitigate the magnetic field, the currents flowing through the WPT coils were varied using the inductor-capacitor-capacitor (LCC) compensation instead of the traditional series-series (SS) compensation. The corresponding calculated field was compliant with the 2010 ICNIRP RL and presented a limited exceedance of the 1998 ICNIRP RL. Finally, the influence of the body width on the magnetic field behavior adopting maximum offset was investigated, demonstrating that the magnetic field emission in the environment increased as the ground clearance increased and as the body width decreased.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/9/1795/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2019License: CC 0Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: https://hdl.handle.net/2108/324883Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12091795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/9/1795/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2019License: CC 0Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: https://hdl.handle.net/2108/324883Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12091795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Wassim Boumerdassi; Tommaso Campi; Silvano Cruciani; Francesca Maradei; Mauro Feliziani;doi: 10.3390/en18102587
The aim of this work is the design of a 200 W transmitting coil for a high-power wireless power transfer (WPT) system based on magnetic resonant coupling (MRC) to charge the battery of a drone in 1 h equipped with a WPT receiving coil integrated into the landing gear. This innovative solution is based on the use of the landing gear as the receiving coil, thereby obviating the need for an additional component (e.g., separate receiving coil). The proposed landing gear is fabricated from aluminum, to reduce weight, and to improve mechanical robustness and electrical performance. Consequently, the design reduces overall weight and system complexity while minimizing potential destabilization of the drone’s flight dynamics. However, a specific design of the primary coil is required to ensure high efficiency even in case of an inaccurate landing of the drone on a ground pad. To this aim, a double-D configuration is here proposed and optimized for the transmitting coil, while a double coil receiver in combination with a charge controller that uses a maximum power point tracking (MPPT) algorithm is integrated into the landing gear. The results obtained from the simulations demonstrate that the proposed WPT system has excellent electrical efficiency and very high tolerance to coil misalignment in terms of the coupling coefficient due to imprecise landing. The transmission efficiency of the final test prototype can reach 95% with a coupling coefficient of k = 0.16, and it can drop to a minimum of 85% when misalignment occurs resulting in k = 0.06.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18102587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18102587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Campi T.; Cruciani S.; Maradei F.; Feliziani M.;doi: 10.3390/en14227790
handle: 2108/325003 , 11573/1623978 , 11697/183043
Dynamic wireless power transfer (DWPT) of electric vehicles (EVs) is the future of urban mobility. The DWPT is often based on a series of short track pads embedded in road pavement that wirelessly transfers electrical energy to EVs equipped with a pickup coil for battery charging. An open problem with this technology is the variation of the coupling factor as a vehicle switches from one transmitting coil to another during its motion. This can cause a significant change in power with possible power spikes and holes. In order to overcome these issues, a new architecture is here proposed based on two pick-up coils mounted in the vehicle underneath. These identical receiver coils are placed in different positions under the vehicle (one in front and the other in the rear) and are activated one at a time so that inductive coupling is always good enough. This innovative configuration has two main advantages: (i) it maintains a nearly constant coupling factor, as well as efficiency and transferred power, as the vehicle moves along the electrified road; (ii) it significantly reduces the cost of road infrastructure. An application is presented to verify the proposed two-coil architecture in comparison with the traditional one-coil. The results of the investigation show the significant improvement achieved in terms of maximum power variation which is nearly stable with the proposed two-coil architecture (only 2.8% variation) while there are many power holes with the traditional single coil architecture. In addition, the number of the required transmitting coils is significantly reduced due to a larger separation between adjacent coils.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7790/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/325003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7790/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/325003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Campi T.; Cruciani S.; De Santis V.; Maradei F.; Feliziani M.;doi: 10.3390/en12142720
handle: 2108/324907 , 11573/1623984 , 11697/137636
This study deals with the inductive-based wireless power transfer (WPT) technology applied to power a deep implant with no fixed position. The usage of a large primary coil is here proposed in order to obtain a nearly uniform magnetic field inside the human body at intermediate frequencies (IFs). A simple configuration of the primary coil, derived by the Helmholtz theory, is proposed. Then, a detailed analysis is carried out to assess the compliance with electromagnetic field (EMF) safety standards. General guidelines on the design of primary and secondary coils are provided for powering or charging a deep implant of cylindrical shape with or without metal housing. Finally, three different WPT coil demonstrators have been fabricated and tested. The obtained results have demonstrated the validity of the proposed technology.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2720/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1623984/3/Campi_Near%20field%20wireless_2019.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: https://hdl.handle.net/2108/324907Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2720/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1623984/3/Campi_Near%20field%20wireless_2019.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: https://hdl.handle.net/2108/324907Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Funded by:EC | FABRICEC| FABRICAuthors: Cruciani S.; Campi T.; Maradei F.; Feliziani M.;doi: 10.3390/en15051645
handle: 2108/325007 , 11573/1623986 , 11697/183033
The aim of this study is to predict the electromagnetic interference (EMI) effect produced by a dynamic wireless power transfer (DWPT) system on a buried multiconductor signal cable. The short-track DWPT system architecture is here considered with an operating frequency of 85 kHz and maximum power transferred to an EV equal to 10 kW. The EMI source is the DWPT transmitting coil which is activated when a vehicle passes over it. The electric and magnetic fields in the earth produced by the DWPT coil currents are calculated numerically using the finite elements method (FEM). These fields are then used to derive the voltage and current sources that appear in the field-excited multiconductor transmission line (MTL) model, used for the buried shielded cable. The MTL is analyzed considering the first ten harmonics of the current. The currents and voltages at the terminal ends are calculated considering the wireless charging of a single electric vehicle (EV) first, and then the simultaneous charging of 10 EVs which absorb a total power of 100 kW. The preliminary results reveal possible EMI problems in underground cables.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1645/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1623986/1/Cruciani_Electromagnetic%20Interference_2022.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Full-Text: https://hdl.handle.net/2108/325007Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1645/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1623986/1/Cruciani_Electromagnetic%20Interference_2022.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Full-Text: https://hdl.handle.net/2108/325007Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Campi, Tommaso; Cruciani, Silvano; Feliziani, Mauro;doi: 10.3390/en11020352
handle: 2108/325124 , 11573/1707887 , 11697/124693
This study deals with the design and the optimization of a wireless power transfer (WPT) charging system based on magnetic resonant coupling applied to an electric vertical take-off and landing Unmanned Aerial Vehicle (UAV). In this study, a procedure for primary and secondary coil design is proposed. The primary circuit in the ground station consists of an array of coils in order to mitigate the negative effects on the coupling factor produced by the possible misalignment between the coils due to an imperfect landing. Key aspects for the design of the secondary coil onboard the UAV are the lightness and compactness of the WPT system components. A demonstrative prototype of the WPT system is applied to a commercial drone. The WPT electrical performances are calculated and measured. Finally, an automatic battery recharge station is built where the drone can autonomously land, recharge the battery and take off to continue its flight mission.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/352/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2018License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: https://hdl.handle.net/2108/325124Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2018Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/352/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2018License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: https://hdl.handle.net/2108/325124Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2018Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Cruciani S.; Campi T.; Maradei F.; Feliziani M.;doi: 10.3390/en13215575
handle: 2108/324928 , 11573/1473430 , 11697/153285
This study deals with the optimization of a shielding structure composed by multiple active coils for mitigating the magnetic field in an automotive wireless power transfer (WPT) system at 85 kHz. Each active coil is independently powered and the most suitable excitation is obtained by an optimization procedure based on the Gradient Descent algorithm. The proposed procedure is described and applied to shield the magnetic field beside an electric vehicle (EV) equipped with SAE standard coils, during wireless charging. The obtained results show that the magnetic field in the most critical area is significantly reduced (i.e., approximately halved) with a very limited influence on the electrical performances (i.e., WPT efficiency decreases by less than 1 percentage point compared to the case without active shielding).
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5575/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1473430/1/Cruciani_Active%20shielding%20design_2020.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: https://hdl.handle.net/2108/324928Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5575/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1473430/1/Cruciani_Active%20shielding%20design_2020.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: https://hdl.handle.net/2108/324928Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Tommaso Campi; Silvano Cruciani; Francesca Maradei; Andrea Montalto; Francesco Musumeci; Mauro Feliziani;handle: 2108/325203 , 11573/1687938 , 11573/1623976 , 11697/183036
This study deals with the thermal analysis of a transcutaneous energy transfer (TET) system, based on the magnetic resonant coupling technology, to wirelessly power a left ventricular assist device (LVAD). The transmitting planar coil is placed on the skin, just in front of the subcutaneously implanted receiving planar coil. The TET system permits to eliminate the infection due to the exit site of the percutaneous driveline cable that connects the LVAD with the external power supply and control system. Since the LVAD continuously requires high power (typically around 5 W as average value), the thermal aspects must be carefully kept under control. Aim of this paper is an extensive thermal analysis to properly design a suitable TET system.
Archivio della ricer... arrow_drop_down IEEE Journal of Electromagnetics RF and Microwaves in Medicine and BiologyArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jerm.2021.3109449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down IEEE Journal of Electromagnetics RF and Microwaves in Medicine and BiologyArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jerm.2021.3109449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Authors: Campi T.; Cruciani S.; Maradei F.; Feliziani M.;doi: 10.3390/en12183483
handle: 2108/324903 , 11573/1419400 , 11697/141315
A near-field wireless power transfer (WPT) technology is applied to recharge the battery of a small size drone. The WPT technology is an extremely attractive solution to build an autonomous base station where the drone can land to wirelessly charge the battery without any human intervention. The innovative WPT design is based on the use of a mechanical part of the drone, i.e., landing gear, as a portion of the electrical circuit, i.e., onboard secondary coil. To this aim, the landing gear is made with an adequately shaped aluminum pipe that, after suitable modifications, performs both structural and electrical functions. The proposed innovative solution has a very small impact on the drone aerodynamics and the additional weight onboard the drone is very limited. Once the design of the secondary coil has been defined, the configuration of the WPT primary coil mounted in a ground base station is optimized to get a good electrical performance, i.e., high values of transferred power and efficiency. The WPT design guidelines of primary and secondary coils are given. Finally, a demonstrator of the WPT system for a lightweight drone is designed, built, and tested.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3483/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3483/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Cruciani S.; Campi T.; Maradei F.; Feliziani M.;doi: 10.3390/en13102522
handle: 2108/324909 , 11573/1419390 , 11697/153286
An active coil system is proposed to shield the magnetic field produced by a dynamic wireless power transfer (WPT) system used to power electric vehicles (EVs) in motion. The considered dynamic WPT is based on an electrified road with many short-track pads. A sophisticated mathematical procedure is developed to optimize the design of the active coils configuration and their excitation. By the proposed approach, the resulting magnetic field is compliant with the reference levels (RLs) of the ICNIRP (International Commission on Non-Ionizing Radiation Protection) 2010 Guidelines inside the cabin of EVs and on the side of the electrified road.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2522/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: https://hdl.handle.net/2108/324909Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2522/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: https://hdl.handle.net/2108/324909Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Authors: Campi T.; Cruciani S.; Maradei F.; Feliziani M.;doi: 10.3390/en12091795
handle: 2108/324883 , 11573/1613223 , 11697/137634
The Society of Automotive Engineers (SAE) Recommended Practice (RP) J2954 (November 2017) was recently published to standardize the wireless power transfer (WPT) technology to recharge the battery of an electric vehicle (EV). The SAE J2954 RP establishes criteria for interoperability, electromagnetic compatibility (EMC), electromagnetic field (EMF) safety, etc. The aim of this study was to predict the magnetic field behavior inside and outside an EV during wireless charging using the design criteria of SAE RP J2954. Analyzing the worst case configurations of WPT coils and EV bodyshell by a sophisticated software tool based on the finite element method (FEM) that takes into account the field reflection and refraction of the metal EV bodyshell, it is possible to numerically assess the magnetic field levels in the environment. The investigation was performed considering the worst case configuration—a small city car with a Class 2 WPT system of 7.7 kVA with WPT coils with maximum admissible ground clearance and offset. The results showed that the reference level (RL) of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines in terms of magnetic flux density was exceeded under and beside the EV. To mitigate the magnetic field, the currents flowing through the WPT coils were varied using the inductor-capacitor-capacitor (LCC) compensation instead of the traditional series-series (SS) compensation. The corresponding calculated field was compliant with the 2010 ICNIRP RL and presented a limited exceedance of the 1998 ICNIRP RL. Finally, the influence of the body width on the magnetic field behavior adopting maximum offset was investigated, demonstrating that the magnetic field emission in the environment increased as the ground clearance increased and as the body width decreased.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/9/1795/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2019License: CC 0Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: https://hdl.handle.net/2108/324883Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12091795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/9/1795/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2019License: CC 0Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: https://hdl.handle.net/2108/324883Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12091795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Wassim Boumerdassi; Tommaso Campi; Silvano Cruciani; Francesca Maradei; Mauro Feliziani;doi: 10.3390/en18102587
The aim of this work is the design of a 200 W transmitting coil for a high-power wireless power transfer (WPT) system based on magnetic resonant coupling (MRC) to charge the battery of a drone in 1 h equipped with a WPT receiving coil integrated into the landing gear. This innovative solution is based on the use of the landing gear as the receiving coil, thereby obviating the need for an additional component (e.g., separate receiving coil). The proposed landing gear is fabricated from aluminum, to reduce weight, and to improve mechanical robustness and electrical performance. Consequently, the design reduces overall weight and system complexity while minimizing potential destabilization of the drone’s flight dynamics. However, a specific design of the primary coil is required to ensure high efficiency even in case of an inaccurate landing of the drone on a ground pad. To this aim, a double-D configuration is here proposed and optimized for the transmitting coil, while a double coil receiver in combination with a charge controller that uses a maximum power point tracking (MPPT) algorithm is integrated into the landing gear. The results obtained from the simulations demonstrate that the proposed WPT system has excellent electrical efficiency and very high tolerance to coil misalignment in terms of the coupling coefficient due to imprecise landing. The transmission efficiency of the final test prototype can reach 95% with a coupling coefficient of k = 0.16, and it can drop to a minimum of 85% when misalignment occurs resulting in k = 0.06.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18102587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18102587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Campi T.; Cruciani S.; Maradei F.; Feliziani M.;doi: 10.3390/en14227790
handle: 2108/325003 , 11573/1623978 , 11697/183043
Dynamic wireless power transfer (DWPT) of electric vehicles (EVs) is the future of urban mobility. The DWPT is often based on a series of short track pads embedded in road pavement that wirelessly transfers electrical energy to EVs equipped with a pickup coil for battery charging. An open problem with this technology is the variation of the coupling factor as a vehicle switches from one transmitting coil to another during its motion. This can cause a significant change in power with possible power spikes and holes. In order to overcome these issues, a new architecture is here proposed based on two pick-up coils mounted in the vehicle underneath. These identical receiver coils are placed in different positions under the vehicle (one in front and the other in the rear) and are activated one at a time so that inductive coupling is always good enough. This innovative configuration has two main advantages: (i) it maintains a nearly constant coupling factor, as well as efficiency and transferred power, as the vehicle moves along the electrified road; (ii) it significantly reduces the cost of road infrastructure. An application is presented to verify the proposed two-coil architecture in comparison with the traditional one-coil. The results of the investigation show the significant improvement achieved in terms of maximum power variation which is nearly stable with the proposed two-coil architecture (only 2.8% variation) while there are many power holes with the traditional single coil architecture. In addition, the number of the required transmitting coils is significantly reduced due to a larger separation between adjacent coils.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7790/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/325003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7790/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/325003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Campi T.; Cruciani S.; De Santis V.; Maradei F.; Feliziani M.;doi: 10.3390/en12142720
handle: 2108/324907 , 11573/1623984 , 11697/137636
This study deals with the inductive-based wireless power transfer (WPT) technology applied to power a deep implant with no fixed position. The usage of a large primary coil is here proposed in order to obtain a nearly uniform magnetic field inside the human body at intermediate frequencies (IFs). A simple configuration of the primary coil, derived by the Helmholtz theory, is proposed. Then, a detailed analysis is carried out to assess the compliance with electromagnetic field (EMF) safety standards. General guidelines on the design of primary and secondary coils are provided for powering or charging a deep implant of cylindrical shape with or without metal housing. Finally, three different WPT coil demonstrators have been fabricated and tested. The obtained results have demonstrated the validity of the proposed technology.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2720/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1623984/3/Campi_Near%20field%20wireless_2019.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: https://hdl.handle.net/2108/324907Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2720/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1623984/3/Campi_Near%20field%20wireless_2019.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: https://hdl.handle.net/2108/324907Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Funded by:EC | FABRICEC| FABRICAuthors: Cruciani S.; Campi T.; Maradei F.; Feliziani M.;doi: 10.3390/en15051645
handle: 2108/325007 , 11573/1623986 , 11697/183033
The aim of this study is to predict the electromagnetic interference (EMI) effect produced by a dynamic wireless power transfer (DWPT) system on a buried multiconductor signal cable. The short-track DWPT system architecture is here considered with an operating frequency of 85 kHz and maximum power transferred to an EV equal to 10 kW. The EMI source is the DWPT transmitting coil which is activated when a vehicle passes over it. The electric and magnetic fields in the earth produced by the DWPT coil currents are calculated numerically using the finite elements method (FEM). These fields are then used to derive the voltage and current sources that appear in the field-excited multiconductor transmission line (MTL) model, used for the buried shielded cable. The MTL is analyzed considering the first ten harmonics of the current. The currents and voltages at the terminal ends are calculated considering the wireless charging of a single electric vehicle (EV) first, and then the simultaneous charging of 10 EVs which absorb a total power of 100 kW. The preliminary results reveal possible EMI problems in underground cables.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1645/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1623986/1/Cruciani_Electromagnetic%20Interference_2022.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Full-Text: https://hdl.handle.net/2108/325007Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1645/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1623986/1/Cruciani_Electromagnetic%20Interference_2022.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Full-Text: https://hdl.handle.net/2108/325007Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Campi, Tommaso; Cruciani, Silvano; Feliziani, Mauro;doi: 10.3390/en11020352
handle: 2108/325124 , 11573/1707887 , 11697/124693
This study deals with the design and the optimization of a wireless power transfer (WPT) charging system based on magnetic resonant coupling applied to an electric vertical take-off and landing Unmanned Aerial Vehicle (UAV). In this study, a procedure for primary and secondary coil design is proposed. The primary circuit in the ground station consists of an array of coils in order to mitigate the negative effects on the coupling factor produced by the possible misalignment between the coils due to an imperfect landing. Key aspects for the design of the secondary coil onboard the UAV are the lightness and compactness of the WPT system components. A demonstrative prototype of the WPT system is applied to a commercial drone. The WPT electrical performances are calculated and measured. Finally, an automatic battery recharge station is built where the drone can autonomously land, recharge the battery and take off to continue its flight mission.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/352/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2018License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: https://hdl.handle.net/2108/325124Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2018Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/352/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2018License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: https://hdl.handle.net/2108/325124Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2018Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Cruciani S.; Campi T.; Maradei F.; Feliziani M.;doi: 10.3390/en13215575
handle: 2108/324928 , 11573/1473430 , 11697/153285
This study deals with the optimization of a shielding structure composed by multiple active coils for mitigating the magnetic field in an automotive wireless power transfer (WPT) system at 85 kHz. Each active coil is independently powered and the most suitable excitation is obtained by an optimization procedure based on the Gradient Descent algorithm. The proposed procedure is described and applied to shield the magnetic field beside an electric vehicle (EV) equipped with SAE standard coils, during wireless charging. The obtained results show that the magnetic field in the most critical area is significantly reduced (i.e., approximately halved) with a very limited influence on the electrical performances (i.e., WPT efficiency decreases by less than 1 percentage point compared to the case without active shielding).
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5575/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1473430/1/Cruciani_Active%20shielding%20design_2020.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: https://hdl.handle.net/2108/324928Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5575/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1473430/1/Cruciani_Active%20shielding%20design_2020.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: https://hdl.handle.net/2108/324928Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Tommaso Campi; Silvano Cruciani; Francesca Maradei; Andrea Montalto; Francesco Musumeci; Mauro Feliziani;handle: 2108/325203 , 11573/1687938 , 11573/1623976 , 11697/183036
This study deals with the thermal analysis of a transcutaneous energy transfer (TET) system, based on the magnetic resonant coupling technology, to wirelessly power a left ventricular assist device (LVAD). The transmitting planar coil is placed on the skin, just in front of the subcutaneously implanted receiving planar coil. The TET system permits to eliminate the infection due to the exit site of the percutaneous driveline cable that connects the LVAD with the external power supply and control system. Since the LVAD continuously requires high power (typically around 5 W as average value), the thermal aspects must be carefully kept under control. Aim of this paper is an extensive thermal analysis to properly design a suitable TET system.
Archivio della ricer... arrow_drop_down IEEE Journal of Electromagnetics RF and Microwaves in Medicine and BiologyArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jerm.2021.3109449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down IEEE Journal of Electromagnetics RF and Microwaves in Medicine and BiologyArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jerm.2021.3109449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu