- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Gregory L. Plett; Adam J. Smiley;Abstract Reduced-order physics-based models of lithium-ion cells provide the opportunity for a battery-management system to define battery-pack operational limits in terms of cell internal electrochemical processes in order to mitigate degradation and to avoid failure modes. For these physics-based models to be relevant over the lifetime of the battery pack, they must somehow adjust to describe the internal processes accurately at every stage of battery life. Two possible approaches to do so suggest themselves. First, an algorithm might somehow adapt the parameter values of the model during operation to match presently observed current–voltage behaviors; but, this must be done very carefully to avoid making the model unstable or physically nonmeaningful. Alternately, a set of models could be pre-computed at different feasible aging points and the model from this set that most closely predicts presently observed current–voltage dynamics could be selected from the set. This second approach guarantees stable and physically meaningful models since all models in the pre-computed set meet these criteria. We propose such an approach here. To do so, we first present a method for calculating a priori the changes to cell parameter values that will be produced by aging due to side reactions and/or material loss. These aged parameter values are utilized to produce reduced-order physics-based models at different stages of cell life. The reduced-order models are then used within a nonlinear interacting multiple-model Kalman filter to select the pre-computed model whose voltage predictions most resembles present measured voltage, so providing an estimate of the aged parameter values of a cell via the parameter values of this model. The selected model may then be used for state-of-charge estimation, state-of-power estimation, state-of-energy estimation, and other model-based battery-management tasks.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Gregory L. Plett; Adam J. Smiley;Abstract Reduced-order physics-based models of lithium-ion cells provide the opportunity for a battery-management system to define battery-pack operational limits in terms of cell internal electrochemical processes in order to mitigate degradation and to avoid failure modes. For these physics-based models to be relevant over the lifetime of the battery pack, they must somehow adjust to describe the internal processes accurately at every stage of battery life. Two possible approaches to do so suggest themselves. First, an algorithm might somehow adapt the parameter values of the model during operation to match presently observed current–voltage behaviors; but, this must be done very carefully to avoid making the model unstable or physically nonmeaningful. Alternately, a set of models could be pre-computed at different feasible aging points and the model from this set that most closely predicts presently observed current–voltage dynamics could be selected from the set. This second approach guarantees stable and physically meaningful models since all models in the pre-computed set meet these criteria. We propose such an approach here. To do so, we first present a method for calculating a priori the changes to cell parameter values that will be produced by aging due to side reactions and/or material loss. These aged parameter values are utilized to produce reduced-order physics-based models at different stages of cell life. The reduced-order models are then used within a nonlinear interacting multiple-model Kalman filter to select the pre-computed model whose voltage predictions most resembles present measured voltage, so providing an estimate of the aged parameter values of a cell via the parameter values of this model. The selected model may then be used for state-of-charge estimation, state-of-power estimation, state-of-energy estimation, and other model-based battery-management tasks.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:IEEE Authors: Gregory L. Plett;Battery-management systems (BMS) seek to maximize battery-pack performance while extending life by optimizing dynamic operational power limits. To do so in a meaningful way, the BMS must have computationally simple yet accurate models of degradation to use in the optimization. As the growth of a solid-electrolyte interphase (SEI) layer on negative-electrode particles in lithium-ion cells is the dominant aging mechanism leading to capacity loss and resistance rise, we propose a reduced-order model of diffusion-or kinetics-limited SEI growth that could be used in an embedded optimization framework. This model approximates a full-order partial-differential-equation (PDE) model in the literature with less than 1 % relative error, at a speedup of more than 19 000 : 1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ccta.2017.8062493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ccta.2017.8062493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:IEEE Authors: Gregory L. Plett;Battery-management systems (BMS) seek to maximize battery-pack performance while extending life by optimizing dynamic operational power limits. To do so in a meaningful way, the BMS must have computationally simple yet accurate models of degradation to use in the optimization. As the growth of a solid-electrolyte interphase (SEI) layer on negative-electrode particles in lithium-ion cells is the dominant aging mechanism leading to capacity loss and resistance rise, we propose a reduced-order model of diffusion-or kinetics-limited SEI growth that could be used in an embedded optimization framework. This model approximates a full-order partial-differential-equation (PDE) model in the literature with less than 1 % relative error, at a speedup of more than 19 000 : 1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ccta.2017.8062493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ccta.2017.8062493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Electrochemical Society M. Scott Trimboli; Yuejiu Zheng; Xiangdong Kong; Zhendong Zhang; Gregory L. Plett;Building a complete cell impedance model and quickly calculating its frequency response are essential for battery design, optimization, and online management. Based on the widely accepted pseudo-two-dimensional (P2D) model, we build a complete full-order partial-dierential-equation (PDE) model for porous-electrode lithium-ion cells that includes a configurable electrical double-layer model at the solid-electrolyte interface (SEI). With the help of a numeric method, cell impedance and frequency responses of the cell’s electrochemical variables at different locations inside the cell are obtained and analyzed. Moreover, in order to achieve the fast calculation of impedance and frequency responses, we derive transfer functions of the internal electrochemical variables, which give a set of exact closed-form equations for cell impedance and internal-variable frequency responses. The Nyquist plot results calculated by the closed-form equations are exactly consistent with the results of numeric simulations using the full-order model, which verifies the accuracy of the transfer functions and the effectiveness of the simplified method.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab67c7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab67c7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Electrochemical Society M. Scott Trimboli; Yuejiu Zheng; Xiangdong Kong; Zhendong Zhang; Gregory L. Plett;Building a complete cell impedance model and quickly calculating its frequency response are essential for battery design, optimization, and online management. Based on the widely accepted pseudo-two-dimensional (P2D) model, we build a complete full-order partial-dierential-equation (PDE) model for porous-electrode lithium-ion cells that includes a configurable electrical double-layer model at the solid-electrolyte interface (SEI). With the help of a numeric method, cell impedance and frequency responses of the cell’s electrochemical variables at different locations inside the cell are obtained and analyzed. Moreover, in order to achieve the fast calculation of impedance and frequency responses, we derive transfer functions of the internal electrochemical variables, which give a set of exact closed-form equations for cell impedance and internal-variable frequency responses. The Nyquist plot results calculated by the closed-form equations are exactly consistent with the results of numeric simulations using the full-order model, which verifies the accuracy of the transfer functions and the effectiveness of the simplified method.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab67c7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab67c7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Guodong Fan; Dongliang Lu; M. Scott Trimboli; Gregory L. Plett; Chong Zhu; Xi Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2022.232555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2022.232555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Guodong Fan; Dongliang Lu; M. Scott Trimboli; Gregory L. Plett; Chong Zhu; Xi Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2022.232555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2022.232555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Andrew Chemistruck; James L. Lee; Gregory L. Plett;Abstract This paper introduces the “discrete-time realization algorithm” (DRA) as a method to find a reduced-order, discrete-time realization of an infinite-order distributed-parameter system such as a transcendental impedance function. In contrast to other methods, the DRA is a bounded-time deterministic method that produces globally optimal reduced-order models. In the DRA we use the sample and hold framework along with the inverse discrete Fourier transform to closely approximate the discrete-time impulse response. Next, the Ho–Kalman algorithm is used to produce a state-space realization from this discrete-time impulse response. Two examples are presented to demonstrate the DRA using low-order rational-polynomial transfer functions, where the DRA solution can be compared to known solutions. A third example demonstrates the DRA with a transcendental impedance function model of lithium diffusion in the solid phase of a lithium-ion battery, showing that a third-order discrete-time model can closely approximate this infinite-order model behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.01.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.01.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Andrew Chemistruck; James L. Lee; Gregory L. Plett;Abstract This paper introduces the “discrete-time realization algorithm” (DRA) as a method to find a reduced-order, discrete-time realization of an infinite-order distributed-parameter system such as a transcendental impedance function. In contrast to other methods, the DRA is a bounded-time deterministic method that produces globally optimal reduced-order models. In the DRA we use the sample and hold framework along with the inverse discrete Fourier transform to closely approximate the discrete-time impulse response. Next, the Ho–Kalman algorithm is used to produce a state-space realization from this discrete-time impulse response. Two examples are presented to demonstrate the DRA using low-order rational-polynomial transfer functions, where the DRA solution can be compared to known solutions. A third example demonstrates the DRA with a transcendental impedance function model of lithium diffusion in the solid phase of a lithium-ion battery, showing that a third-order discrete-time model can closely approximate this infinite-order model behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.01.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.01.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Gregory L. Plett;Abstract Battery management systems in hybrid-electric-vehicle battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state-of-charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose methods, based on extended Kalman filtering (EKF), that are able to accomplish these goals for a lithium ion polymer battery pack. We expect that they will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This third paper concludes the series by presenting five additional applications where either an EKF or results from EKF may be used in typical BMS algorithms: initializing state estimates after the vehicle has been idle for some time; estimating state-of-charge with dynamic error bounds on the estimate; estimating pack available dis/charge power; tracking changing pack parameters (including power fade and capacity fade) as the pack ages, and therefore providing a quantitative estimate of state-of-health; and determining which cells must be equalized. Results from pack tests are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(04)00359-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 2,755 popularity Top 0.01% influence Top 0.01% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(04)00359-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Gregory L. Plett;Abstract Battery management systems in hybrid-electric-vehicle battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state-of-charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose methods, based on extended Kalman filtering (EKF), that are able to accomplish these goals for a lithium ion polymer battery pack. We expect that they will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This third paper concludes the series by presenting five additional applications where either an EKF or results from EKF may be used in typical BMS algorithms: initializing state estimates after the vehicle has been idle for some time; estimating state-of-charge with dynamic error bounds on the estimate; estimating pack available dis/charge power; tracking changing pack parameters (including power fade and capacity fade) as the pack ages, and therefore providing a quantitative estimate of state-of-health; and determining which cells must be equalized. Results from pack tests are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(04)00359-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 2,755 popularity Top 0.01% influence Top 0.01% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(04)00359-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Tongzheng Zhao; Xiangdong Kong; Dongdong Qiao; Zhendong Zhang; M. Scott Trimboli; Gregory L. Plett; Yuejiu Zheng;Abstract The early detection of micro internal short circuit (ISCr) cells can provide sufficient response time for preventing accidents such as spontaneous thermal runaway in battery packs of electric vehicles, and greatly improve safety. Because the existing models describing ISCr are mainly equivalent circuit models and three-dimensional physics-based models, we build a pseudo-two-dimensional model of micro ISCr cells to make up for the gaps. Using the calculation results of this model, we reveal the phenomenon of electric quantity depletion and the variation of internal electrochemical parameters when a micro ISCr occurs in the cell. We find the effective electrical conductivity of the separator is a crucial parameter describing the ISCr severity and determine reasonable values for this effective conductivity for fault diagnosis and battery design. Moreover, we propose an impedance-identification method that can be used for ISCr diagnostics. Through the simulation and experimental results, we find that the impedance of micro ISCr cells is different from that of normal cells and shows a certain regularity with the increase of ISCr severity.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Tongzheng Zhao; Xiangdong Kong; Dongdong Qiao; Zhendong Zhang; M. Scott Trimboli; Gregory L. Plett; Yuejiu Zheng;Abstract The early detection of micro internal short circuit (ISCr) cells can provide sufficient response time for preventing accidents such as spontaneous thermal runaway in battery packs of electric vehicles, and greatly improve safety. Because the existing models describing ISCr are mainly equivalent circuit models and three-dimensional physics-based models, we build a pseudo-two-dimensional model of micro ISCr cells to make up for the gaps. Using the calculation results of this model, we reveal the phenomenon of electric quantity depletion and the variation of internal electrochemical parameters when a micro ISCr occurs in the cell. We find the effective electrical conductivity of the separator is a crucial parameter describing the ISCr severity and determine reasonable values for this effective conductivity for fault diagnosis and battery design. Moreover, we propose an impedance-identification method that can be used for ISCr diagnostics. Through the simulation and experimental results, we find that the impedance of micro ISCr cells is different from that of normal cells and shows a certain regularity with the increase of ISCr severity.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Xuning Feng; Albert Rodríguez; M. Scott Trimboli; Minggao Ouyang; Gregory L. Plett; Chu Zhengyu; Ryan Jobman;Abstract Although electrochemical models have superior capabilities of internal states estimation to equivalent-circuit models, they have larger numbers of parameter values to be determined while predicting the behaviors of a real cell. Parameter identification of electrochemical models is essential but present methods are time-consuming and complex. In the “Part1” paper in this series, a lumped-parameter electrochemical model was built with the redundant/unobservable parameters removed. Using the this model, this paper proposes a novel stepwise method that can identify the whole set of parameter values for a physical cell using simple tests. The lumped-parameter model is specifically reformulated mostly based on frequency decomposition, and a reference electrode is included in the model to achieve electrode decoupling. The method is decomposed into four tests and eight steps, where the number of parameters to be identified in each step is significantly reduced, enhancing the computational efficiency and improving the identification accuracy. The identified values are first directly compared to the true values, and then the time-domain predictions of the lumped-parameter model using the identified values are compared to those of the full-order model using the true parameter values in terms of the terminal voltage and electrochemical states under different operation conditions.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Xuning Feng; Albert Rodríguez; M. Scott Trimboli; Minggao Ouyang; Gregory L. Plett; Chu Zhengyu; Ryan Jobman;Abstract Although electrochemical models have superior capabilities of internal states estimation to equivalent-circuit models, they have larger numbers of parameter values to be determined while predicting the behaviors of a real cell. Parameter identification of electrochemical models is essential but present methods are time-consuming and complex. In the “Part1” paper in this series, a lumped-parameter electrochemical model was built with the redundant/unobservable parameters removed. Using the this model, this paper proposes a novel stepwise method that can identify the whole set of parameter values for a physical cell using simple tests. The lumped-parameter model is specifically reformulated mostly based on frequency decomposition, and a reference electrode is included in the model to achieve electrode decoupling. The method is decomposed into four tests and eight steps, where the number of parameters to be identified in each step is significantly reduced, enhancing the computational efficiency and improving the identification accuracy. The identified values are first directly compared to the true values, and then the time-domain predictions of the lumped-parameter model using the identified values are compared to those of the full-order model using the true parameter values in terms of the terminal voltage and electrochemical states under different operation conditions.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:The Electrochemical Society Authors: Jonghyun Park; Gregory L. Plett; Ann Marie Sastry; Jeong Hun Seo;doi: 10.1149/1.3458649
Battery swelling due to internal gas formation in cells can result in severe degradation of battery performance. Within a battery cell, evolved gas reduces the interfacial area between active material and electrolyte, and thus hinders the electrochemical reactions at the solid electrolyte interphase SEI. Also, the pressure buildup due to gas generation results in mechanical stress inside the electrodes, which has been implicated in local fractures in the electrodes. Cell swelling occurs due to gas generation resulting from the decomposition of the electrolyte and from reactions with impurities in Li-ion batteries. 1-3
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3458649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3458649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:The Electrochemical Society Authors: Jonghyun Park; Gregory L. Plett; Ann Marie Sastry; Jeong Hun Seo;doi: 10.1149/1.3458649
Battery swelling due to internal gas formation in cells can result in severe degradation of battery performance. Within a battery cell, evolved gas reduces the interfacial area between active material and electrolyte, and thus hinders the electrochemical reactions at the solid electrolyte interphase SEI. Also, the pressure buildup due to gas generation results in mechanical stress inside the electrodes, which has been implicated in local fractures in the electrodes. Cell swelling occurs due to gas generation resulting from the decomposition of the electrolyte and from reactions with impurities in Li-ion batteries. 1-3
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3458649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3458649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Gregory L. Plett; Albert Rodríguez;Abstract Battery-management systems rely on mathematical sets of equations known as models when implementing battery controls procedures. Models are used in state-of-charge, state-of-health, available-energy, and available-power estimation tasks. These models should be high fidelity for good estimates but also computationally lightweight for inexpensive implementation. This paper and its Part-2 companion concern themselves with simple but accurate models of lithium-ion cells having composite electrodes, which are composed of a blend of multiple active materials. In this paper, we develop two forms of equivalent-circuit model (ECM): the series ECM and the parallel ECM—and show how to find values for the model parameters using current–voltage input–output data. We compare simulations of the ECMs to truth data from simulations of a full-order model and show that an ECM designed with knowledge of the material blend can outperform a standard ECM of similar complexity. In the companion paper, we show that it is further possible to create physics-based reduced-order models that have greater predictive power.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Gregory L. Plett; Albert Rodríguez;Abstract Battery-management systems rely on mathematical sets of equations known as models when implementing battery controls procedures. Models are used in state-of-charge, state-of-health, available-energy, and available-power estimation tasks. These models should be high fidelity for good estimates but also computationally lightweight for inexpensive implementation. This paper and its Part-2 companion concern themselves with simple but accurate models of lithium-ion cells having composite electrodes, which are composed of a blend of multiple active materials. In this paper, we develop two forms of equivalent-circuit model (ECM): the series ECM and the parallel ECM—and show how to find values for the model parameters using current–voltage input–output data. We compare simulations of the ECMs to truth data from simulations of a full-order model and show that an ECM designed with knowledge of the material blend can outperform a standard ECM of similar complexity. In the companion paper, we show that it is further possible to create physics-based reduced-order models that have greater predictive power.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Gregory L. Plett; Adam J. Smiley;Abstract Reduced-order physics-based models of lithium-ion cells provide the opportunity for a battery-management system to define battery-pack operational limits in terms of cell internal electrochemical processes in order to mitigate degradation and to avoid failure modes. For these physics-based models to be relevant over the lifetime of the battery pack, they must somehow adjust to describe the internal processes accurately at every stage of battery life. Two possible approaches to do so suggest themselves. First, an algorithm might somehow adapt the parameter values of the model during operation to match presently observed current–voltage behaviors; but, this must be done very carefully to avoid making the model unstable or physically nonmeaningful. Alternately, a set of models could be pre-computed at different feasible aging points and the model from this set that most closely predicts presently observed current–voltage dynamics could be selected from the set. This second approach guarantees stable and physically meaningful models since all models in the pre-computed set meet these criteria. We propose such an approach here. To do so, we first present a method for calculating a priori the changes to cell parameter values that will be produced by aging due to side reactions and/or material loss. These aged parameter values are utilized to produce reduced-order physics-based models at different stages of cell life. The reduced-order models are then used within a nonlinear interacting multiple-model Kalman filter to select the pre-computed model whose voltage predictions most resembles present measured voltage, so providing an estimate of the aged parameter values of a cell via the parameter values of this model. The selected model may then be used for state-of-charge estimation, state-of-power estimation, state-of-energy estimation, and other model-based battery-management tasks.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Gregory L. Plett; Adam J. Smiley;Abstract Reduced-order physics-based models of lithium-ion cells provide the opportunity for a battery-management system to define battery-pack operational limits in terms of cell internal electrochemical processes in order to mitigate degradation and to avoid failure modes. For these physics-based models to be relevant over the lifetime of the battery pack, they must somehow adjust to describe the internal processes accurately at every stage of battery life. Two possible approaches to do so suggest themselves. First, an algorithm might somehow adapt the parameter values of the model during operation to match presently observed current–voltage behaviors; but, this must be done very carefully to avoid making the model unstable or physically nonmeaningful. Alternately, a set of models could be pre-computed at different feasible aging points and the model from this set that most closely predicts presently observed current–voltage dynamics could be selected from the set. This second approach guarantees stable and physically meaningful models since all models in the pre-computed set meet these criteria. We propose such an approach here. To do so, we first present a method for calculating a priori the changes to cell parameter values that will be produced by aging due to side reactions and/or material loss. These aged parameter values are utilized to produce reduced-order physics-based models at different stages of cell life. The reduced-order models are then used within a nonlinear interacting multiple-model Kalman filter to select the pre-computed model whose voltage predictions most resembles present measured voltage, so providing an estimate of the aged parameter values of a cell via the parameter values of this model. The selected model may then be used for state-of-charge estimation, state-of-power estimation, state-of-energy estimation, and other model-based battery-management tasks.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.07.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:IEEE Authors: Gregory L. Plett;Battery-management systems (BMS) seek to maximize battery-pack performance while extending life by optimizing dynamic operational power limits. To do so in a meaningful way, the BMS must have computationally simple yet accurate models of degradation to use in the optimization. As the growth of a solid-electrolyte interphase (SEI) layer on negative-electrode particles in lithium-ion cells is the dominant aging mechanism leading to capacity loss and resistance rise, we propose a reduced-order model of diffusion-or kinetics-limited SEI growth that could be used in an embedded optimization framework. This model approximates a full-order partial-differential-equation (PDE) model in the literature with less than 1 % relative error, at a speedup of more than 19 000 : 1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ccta.2017.8062493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ccta.2017.8062493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:IEEE Authors: Gregory L. Plett;Battery-management systems (BMS) seek to maximize battery-pack performance while extending life by optimizing dynamic operational power limits. To do so in a meaningful way, the BMS must have computationally simple yet accurate models of degradation to use in the optimization. As the growth of a solid-electrolyte interphase (SEI) layer on negative-electrode particles in lithium-ion cells is the dominant aging mechanism leading to capacity loss and resistance rise, we propose a reduced-order model of diffusion-or kinetics-limited SEI growth that could be used in an embedded optimization framework. This model approximates a full-order partial-differential-equation (PDE) model in the literature with less than 1 % relative error, at a speedup of more than 19 000 : 1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ccta.2017.8062493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ccta.2017.8062493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Electrochemical Society M. Scott Trimboli; Yuejiu Zheng; Xiangdong Kong; Zhendong Zhang; Gregory L. Plett;Building a complete cell impedance model and quickly calculating its frequency response are essential for battery design, optimization, and online management. Based on the widely accepted pseudo-two-dimensional (P2D) model, we build a complete full-order partial-dierential-equation (PDE) model for porous-electrode lithium-ion cells that includes a configurable electrical double-layer model at the solid-electrolyte interface (SEI). With the help of a numeric method, cell impedance and frequency responses of the cell’s electrochemical variables at different locations inside the cell are obtained and analyzed. Moreover, in order to achieve the fast calculation of impedance and frequency responses, we derive transfer functions of the internal electrochemical variables, which give a set of exact closed-form equations for cell impedance and internal-variable frequency responses. The Nyquist plot results calculated by the closed-form equations are exactly consistent with the results of numeric simulations using the full-order model, which verifies the accuracy of the transfer functions and the effectiveness of the simplified method.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab67c7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab67c7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Electrochemical Society M. Scott Trimboli; Yuejiu Zheng; Xiangdong Kong; Zhendong Zhang; Gregory L. Plett;Building a complete cell impedance model and quickly calculating its frequency response are essential for battery design, optimization, and online management. Based on the widely accepted pseudo-two-dimensional (P2D) model, we build a complete full-order partial-dierential-equation (PDE) model for porous-electrode lithium-ion cells that includes a configurable electrical double-layer model at the solid-electrolyte interface (SEI). With the help of a numeric method, cell impedance and frequency responses of the cell’s electrochemical variables at different locations inside the cell are obtained and analyzed. Moreover, in order to achieve the fast calculation of impedance and frequency responses, we derive transfer functions of the internal electrochemical variables, which give a set of exact closed-form equations for cell impedance and internal-variable frequency responses. The Nyquist plot results calculated by the closed-form equations are exactly consistent with the results of numeric simulations using the full-order model, which verifies the accuracy of the transfer functions and the effectiveness of the simplified method.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab67c7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab67c7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Guodong Fan; Dongliang Lu; M. Scott Trimboli; Gregory L. Plett; Chong Zhu; Xi Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2022.232555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2022.232555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Guodong Fan; Dongliang Lu; M. Scott Trimboli; Gregory L. Plett; Chong Zhu; Xi Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2022.232555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2022.232555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Andrew Chemistruck; James L. Lee; Gregory L. Plett;Abstract This paper introduces the “discrete-time realization algorithm” (DRA) as a method to find a reduced-order, discrete-time realization of an infinite-order distributed-parameter system such as a transcendental impedance function. In contrast to other methods, the DRA is a bounded-time deterministic method that produces globally optimal reduced-order models. In the DRA we use the sample and hold framework along with the inverse discrete Fourier transform to closely approximate the discrete-time impulse response. Next, the Ho–Kalman algorithm is used to produce a state-space realization from this discrete-time impulse response. Two examples are presented to demonstrate the DRA using low-order rational-polynomial transfer functions, where the DRA solution can be compared to known solutions. A third example demonstrates the DRA with a transcendental impedance function model of lithium diffusion in the solid phase of a lithium-ion battery, showing that a third-order discrete-time model can closely approximate this infinite-order model behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.01.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.01.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Andrew Chemistruck; James L. Lee; Gregory L. Plett;Abstract This paper introduces the “discrete-time realization algorithm” (DRA) as a method to find a reduced-order, discrete-time realization of an infinite-order distributed-parameter system such as a transcendental impedance function. In contrast to other methods, the DRA is a bounded-time deterministic method that produces globally optimal reduced-order models. In the DRA we use the sample and hold framework along with the inverse discrete Fourier transform to closely approximate the discrete-time impulse response. Next, the Ho–Kalman algorithm is used to produce a state-space realization from this discrete-time impulse response. Two examples are presented to demonstrate the DRA using low-order rational-polynomial transfer functions, where the DRA solution can be compared to known solutions. A third example demonstrates the DRA with a transcendental impedance function model of lithium diffusion in the solid phase of a lithium-ion battery, showing that a third-order discrete-time model can closely approximate this infinite-order model behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.01.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.01.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Gregory L. Plett;Abstract Battery management systems in hybrid-electric-vehicle battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state-of-charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose methods, based on extended Kalman filtering (EKF), that are able to accomplish these goals for a lithium ion polymer battery pack. We expect that they will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This third paper concludes the series by presenting five additional applications where either an EKF or results from EKF may be used in typical BMS algorithms: initializing state estimates after the vehicle has been idle for some time; estimating state-of-charge with dynamic error bounds on the estimate; estimating pack available dis/charge power; tracking changing pack parameters (including power fade and capacity fade) as the pack ages, and therefore providing a quantitative estimate of state-of-health; and determining which cells must be equalized. Results from pack tests are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(04)00359-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 2,755 popularity Top 0.01% influence Top 0.01% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(04)00359-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Gregory L. Plett;Abstract Battery management systems in hybrid-electric-vehicle battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state-of-charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose methods, based on extended Kalman filtering (EKF), that are able to accomplish these goals for a lithium ion polymer battery pack. We expect that they will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This third paper concludes the series by presenting five additional applications where either an EKF or results from EKF may be used in typical BMS algorithms: initializing state estimates after the vehicle has been idle for some time; estimating state-of-charge with dynamic error bounds on the estimate; estimating pack available dis/charge power; tracking changing pack parameters (including power fade and capacity fade) as the pack ages, and therefore providing a quantitative estimate of state-of-health; and determining which cells must be equalized. Results from pack tests are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(04)00359-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 2,755 popularity Top 0.01% influence Top 0.01% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7753(04)00359-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Tongzheng Zhao; Xiangdong Kong; Dongdong Qiao; Zhendong Zhang; M. Scott Trimboli; Gregory L. Plett; Yuejiu Zheng;Abstract The early detection of micro internal short circuit (ISCr) cells can provide sufficient response time for preventing accidents such as spontaneous thermal runaway in battery packs of electric vehicles, and greatly improve safety. Because the existing models describing ISCr are mainly equivalent circuit models and three-dimensional physics-based models, we build a pseudo-two-dimensional model of micro ISCr cells to make up for the gaps. Using the calculation results of this model, we reveal the phenomenon of electric quantity depletion and the variation of internal electrochemical parameters when a micro ISCr occurs in the cell. We find the effective electrical conductivity of the separator is a crucial parameter describing the ISCr severity and determine reasonable values for this effective conductivity for fault diagnosis and battery design. Moreover, we propose an impedance-identification method that can be used for ISCr diagnostics. Through the simulation and experimental results, we find that the impedance of micro ISCr cells is different from that of normal cells and shows a certain regularity with the increase of ISCr severity.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Tongzheng Zhao; Xiangdong Kong; Dongdong Qiao; Zhendong Zhang; M. Scott Trimboli; Gregory L. Plett; Yuejiu Zheng;Abstract The early detection of micro internal short circuit (ISCr) cells can provide sufficient response time for preventing accidents such as spontaneous thermal runaway in battery packs of electric vehicles, and greatly improve safety. Because the existing models describing ISCr are mainly equivalent circuit models and three-dimensional physics-based models, we build a pseudo-two-dimensional model of micro ISCr cells to make up for the gaps. Using the calculation results of this model, we reveal the phenomenon of electric quantity depletion and the variation of internal electrochemical parameters when a micro ISCr occurs in the cell. We find the effective electrical conductivity of the separator is a crucial parameter describing the ISCr severity and determine reasonable values for this effective conductivity for fault diagnosis and battery design. Moreover, we propose an impedance-identification method that can be used for ISCr diagnostics. Through the simulation and experimental results, we find that the impedance of micro ISCr cells is different from that of normal cells and shows a certain regularity with the increase of ISCr severity.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Xuning Feng; Albert Rodríguez; M. Scott Trimboli; Minggao Ouyang; Gregory L. Plett; Chu Zhengyu; Ryan Jobman;Abstract Although electrochemical models have superior capabilities of internal states estimation to equivalent-circuit models, they have larger numbers of parameter values to be determined while predicting the behaviors of a real cell. Parameter identification of electrochemical models is essential but present methods are time-consuming and complex. In the “Part1” paper in this series, a lumped-parameter electrochemical model was built with the redundant/unobservable parameters removed. Using the this model, this paper proposes a novel stepwise method that can identify the whole set of parameter values for a physical cell using simple tests. The lumped-parameter model is specifically reformulated mostly based on frequency decomposition, and a reference electrode is included in the model to achieve electrode decoupling. The method is decomposed into four tests and eight steps, where the number of parameters to be identified in each step is significantly reduced, enhancing the computational efficiency and improving the identification accuracy. The identified values are first directly compared to the true values, and then the time-domain predictions of the lumped-parameter model using the identified values are compared to those of the full-order model using the true parameter values in terms of the terminal voltage and electrochemical states under different operation conditions.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Xuning Feng; Albert Rodríguez; M. Scott Trimboli; Minggao Ouyang; Gregory L. Plett; Chu Zhengyu; Ryan Jobman;Abstract Although electrochemical models have superior capabilities of internal states estimation to equivalent-circuit models, they have larger numbers of parameter values to be determined while predicting the behaviors of a real cell. Parameter identification of electrochemical models is essential but present methods are time-consuming and complex. In the “Part1” paper in this series, a lumped-parameter electrochemical model was built with the redundant/unobservable parameters removed. Using the this model, this paper proposes a novel stepwise method that can identify the whole set of parameter values for a physical cell using simple tests. The lumped-parameter model is specifically reformulated mostly based on frequency decomposition, and a reference electrode is included in the model to achieve electrode decoupling. The method is decomposed into four tests and eight steps, where the number of parameters to be identified in each step is significantly reduced, enhancing the computational efficiency and improving the identification accuracy. The identified values are first directly compared to the true values, and then the time-domain predictions of the lumped-parameter model using the identified values are compared to those of the full-order model using the true parameter values in terms of the terminal voltage and electrochemical states under different operation conditions.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.101101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:The Electrochemical Society Authors: Jonghyun Park; Gregory L. Plett; Ann Marie Sastry; Jeong Hun Seo;doi: 10.1149/1.3458649
Battery swelling due to internal gas formation in cells can result in severe degradation of battery performance. Within a battery cell, evolved gas reduces the interfacial area between active material and electrolyte, and thus hinders the electrochemical reactions at the solid electrolyte interphase SEI. Also, the pressure buildup due to gas generation results in mechanical stress inside the electrodes, which has been implicated in local fractures in the electrodes. Cell swelling occurs due to gas generation resulting from the decomposition of the electrolyte and from reactions with impurities in Li-ion batteries. 1-3
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3458649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3458649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:The Electrochemical Society Authors: Jonghyun Park; Gregory L. Plett; Ann Marie Sastry; Jeong Hun Seo;doi: 10.1149/1.3458649
Battery swelling due to internal gas formation in cells can result in severe degradation of battery performance. Within a battery cell, evolved gas reduces the interfacial area between active material and electrolyte, and thus hinders the electrochemical reactions at the solid electrolyte interphase SEI. Also, the pressure buildup due to gas generation results in mechanical stress inside the electrodes, which has been implicated in local fractures in the electrodes. Cell swelling occurs due to gas generation resulting from the decomposition of the electrolyte and from reactions with impurities in Li-ion batteries. 1-3
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3458649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3458649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Gregory L. Plett; Albert Rodríguez;Abstract Battery-management systems rely on mathematical sets of equations known as models when implementing battery controls procedures. Models are used in state-of-charge, state-of-health, available-energy, and available-power estimation tasks. These models should be high fidelity for good estimates but also computationally lightweight for inexpensive implementation. This paper and its Part-2 companion concern themselves with simple but accurate models of lithium-ion cells having composite electrodes, which are composed of a blend of multiple active materials. In this paper, we develop two forms of equivalent-circuit model (ECM): the series ECM and the parallel ECM—and show how to find values for the model parameters using current–voltage input–output data. We compare simulations of the ECMs to truth data from simulations of a full-order model and show that an ECM designed with knowledge of the material blend can outperform a standard ECM of similar complexity. In the companion paper, we show that it is further possible to create physics-based reduced-order models that have greater predictive power.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Gregory L. Plett; Albert Rodríguez;Abstract Battery-management systems rely on mathematical sets of equations known as models when implementing battery controls procedures. Models are used in state-of-charge, state-of-health, available-energy, and available-power estimation tasks. These models should be high fidelity for good estimates but also computationally lightweight for inexpensive implementation. This paper and its Part-2 companion concern themselves with simple but accurate models of lithium-ion cells having composite electrodes, which are composed of a blend of multiple active materials. In this paper, we develop two forms of equivalent-circuit model (ECM): the series ECM and the parallel ECM—and show how to find values for the model parameters using current–voltage input–output data. We compare simulations of the ECMs to truth data from simulations of a full-order model and show that an ECM designed with knowledge of the material blend can outperform a standard ECM of similar complexity. In the companion paper, we show that it is further possible to create physics-based reduced-order models that have greater predictive power.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu