- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 MalaysiaPublisher:Elsevier BV Khalife, Esmail; Kazerooni, Hanif; Mirsalim, Mostafa; Shojaei, Taha Roodbar; Mohammadi, Pouya; Mohd Salleh, Amran; Najafi, Bahman; Tabatabaei, Meisam;Diminishing fuel resources and stringent emission mandates have demanded cleaner combustion and increased fuel efficiency. Three water addition rates, i.e., 2, 4, and 6 wt% in biodiesel-diesel blend (B5) was investigated herein. Combustion characteristics of the emulsified fuel blends were compared in a naturally-aspirated diesel engine at full load and different engine speeds. More specifically, biodiesel was produced from waste cooking oil (WCO) and to further increase waste utilization, recycled biodiesel wastewater was used as additive in B5. The result obtained showed that low-level water addition (i.e., 2 and 4 wt%) in B5 led to different results from those obtained using higher water addition rates (i.e., >5 wt%) reported by the previous studies. In more details, the findings of the present study revealed that low level water addition in B5 could considerably reduce CO, HC, CO2, and NOx emissions. Among water-containing B5 fuel emulsions, the optimal water addition level in terms of engine performance parameters and emissions was found at 4 wt%. In particular, the emitted CO2, HC, and NOx were decreased by over 8.5%, 28%, and 24%, respectively, at maximum speed of 2500 rpm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 MalaysiaPublisher:Elsevier BV Khalife, Esmail; Kazerooni, Hanif; Mirsalim, Mostafa; Shojaei, Taha Roodbar; Mohammadi, Pouya; Mohd Salleh, Amran; Najafi, Bahman; Tabatabaei, Meisam;Diminishing fuel resources and stringent emission mandates have demanded cleaner combustion and increased fuel efficiency. Three water addition rates, i.e., 2, 4, and 6 wt% in biodiesel-diesel blend (B5) was investigated herein. Combustion characteristics of the emulsified fuel blends were compared in a naturally-aspirated diesel engine at full load and different engine speeds. More specifically, biodiesel was produced from waste cooking oil (WCO) and to further increase waste utilization, recycled biodiesel wastewater was used as additive in B5. The result obtained showed that low-level water addition (i.e., 2 and 4 wt%) in B5 led to different results from those obtained using higher water addition rates (i.e., >5 wt%) reported by the previous studies. In more details, the findings of the present study revealed that low level water addition in B5 could considerably reduce CO, HC, CO2, and NOx emissions. Among water-containing B5 fuel emulsions, the optimal water addition level in terms of engine performance parameters and emissions was found at 4 wt%. In particular, the emitted CO2, HC, and NOx were decreased by over 8.5%, 28%, and 24%, respectively, at maximum speed of 2500 rpm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Informa UK Limited Authors: Wan Azlina Wan Ab Karim Ghani; Hussein Kisiki Nsamba; H. M. Yusuf; Mohamad Amran Mohd Salleh; +1 AuthorsWan Azlina Wan Ab Karim Ghani; Hussein Kisiki Nsamba; H. M. Yusuf; Mohamad Amran Mohd Salleh; Azni Idris;In this study, the effects of equivalence ratio and biochar particle size on high heating value, gas composition, carbon conversion, and gas production from the empty fruit bunch biochar were experimentally investigated in a fluidized bed reactor. Equivalence ratio varied from 0.1 to 0.34, while the size varied from 0.2 mm ≤ s ≥ 1 mm. It was observed that the syngas production increased as the air flow rate increased until equivalence ratio was equivalent to 0.24 and finally decreased with increasing equivalence ratio. In addition, the high heating value of syngas also decreased as equivalence ratio increased. The increase in the particle size from 0.2 mm ≤ s ≥ 1 mm decreased the H2 yield from 34.75 to 25.3%, and decreased the overall syngas production and high heating value. The produced syngas revealed a high heating value in the range of 22.6–52.9 MJ/KG. Meanwhile, the maximum char to gas conversion efficiency achieved was 80.2%. A hydrogen-rich gas was successfully produced through air gasification at...
Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2011.555440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2011.555440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Informa UK Limited Authors: Wan Azlina Wan Ab Karim Ghani; Hussein Kisiki Nsamba; H. M. Yusuf; Mohamad Amran Mohd Salleh; +1 AuthorsWan Azlina Wan Ab Karim Ghani; Hussein Kisiki Nsamba; H. M. Yusuf; Mohamad Amran Mohd Salleh; Azni Idris;In this study, the effects of equivalence ratio and biochar particle size on high heating value, gas composition, carbon conversion, and gas production from the empty fruit bunch biochar were experimentally investigated in a fluidized bed reactor. Equivalence ratio varied from 0.1 to 0.34, while the size varied from 0.2 mm ≤ s ≥ 1 mm. It was observed that the syngas production increased as the air flow rate increased until equivalence ratio was equivalent to 0.24 and finally decreased with increasing equivalence ratio. In addition, the high heating value of syngas also decreased as equivalence ratio increased. The increase in the particle size from 0.2 mm ≤ s ≥ 1 mm decreased the H2 yield from 34.75 to 25.3%, and decreased the overall syngas production and high heating value. The produced syngas revealed a high heating value in the range of 22.6–52.9 MJ/KG. Meanwhile, the maximum char to gas conversion efficiency achieved was 80.2%. A hydrogen-rich gas was successfully produced through air gasification at...
Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2011.555440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2011.555440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Malaysia, Australia, MalaysiaPublisher:American Chemical Society (ACS) Bidita, B. S.; Suraya, A. R.; Shazed, M. A.; Salleh, M. A. Mohd; Idris, A.;doi: 10.1021/ef5002259
A comprehensive experimental study was accomplished to assess the influence of fuel additive in the formulation of water-in-diesel (W/D) nanoemulsions using surfactant in two ways, with and without including fuel additive, and a comparison is made with neat diesel. A range of surfactant concentration (0.25% to 0.40% v/v) was used with varying water concentration (0.7% to 1% v/v) to prepare W/D nanoemulsion fuel. High energy emulsification process was employed for this purpose and attempts to compare between both ways, physical and experimental observations were considered. The destabilization methods, mainly Oswald ripening, was discussed to investigate the stability. The influence of fuel additive over the characteristics of nanoemulsion such as droplet size, stability, viscosity, emulsion calorific value was studied in detail. The droplet size of W/D nanoemulsion fuel was found to be in the range approximately from 2 to 200 nm in both procedures. The engine test bed was utilized to combust the emulsion ...
Energy & Fuels arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef5002259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Fuels arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef5002259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Malaysia, Australia, MalaysiaPublisher:American Chemical Society (ACS) Bidita, B. S.; Suraya, A. R.; Shazed, M. A.; Salleh, M. A. Mohd; Idris, A.;doi: 10.1021/ef5002259
A comprehensive experimental study was accomplished to assess the influence of fuel additive in the formulation of water-in-diesel (W/D) nanoemulsions using surfactant in two ways, with and without including fuel additive, and a comparison is made with neat diesel. A range of surfactant concentration (0.25% to 0.40% v/v) was used with varying water concentration (0.7% to 1% v/v) to prepare W/D nanoemulsion fuel. High energy emulsification process was employed for this purpose and attempts to compare between both ways, physical and experimental observations were considered. The destabilization methods, mainly Oswald ripening, was discussed to investigate the stability. The influence of fuel additive over the characteristics of nanoemulsion such as droplet size, stability, viscosity, emulsion calorific value was studied in detail. The droplet size of W/D nanoemulsion fuel was found to be in the range approximately from 2 to 200 nm in both procedures. The engine test bed was utilized to combust the emulsion ...
Energy & Fuels arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef5002259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Fuels arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef5002259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 MalaysiaPublisher:Elsevier BV Authors: Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; Rebitanim, Nur Zalikha; Rebitanim, Nur Akmal;In Malaysia, abundant agricultural wastes are generated yearly. Therefore it is beneficial to discover new ways to utilize the wastes and employ the carbon source in different industries. Biochar are produced through many heat treatments such as combustion, gasification and pyrolysis for energy generation. The characteristics of these stable carbons such as the physical properties, chemical composition, surface area and surface chemistry determine the effectiveness of the cabon in different applications. Biochar has the ability to retain carbon and this condition is advantageous to prevent the release of carbon back to the atmosphere in the form of carbon dioxide. Application of biochar to soil helps to improve soil fertility and raise agricultural productivity. Biochar also has the ability to reduce carbon dioxide in the flue gas system. There have only been a few studies that discuss on the potential applications of this agriculture waste. The biochar's potential application as carbon sequester for soil application, energy production and dye sorption is being explored in this paper.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 MalaysiaPublisher:Elsevier BV Authors: Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; Rebitanim, Nur Zalikha; Rebitanim, Nur Akmal;In Malaysia, abundant agricultural wastes are generated yearly. Therefore it is beneficial to discover new ways to utilize the wastes and employ the carbon source in different industries. Biochar are produced through many heat treatments such as combustion, gasification and pyrolysis for energy generation. The characteristics of these stable carbons such as the physical properties, chemical composition, surface area and surface chemistry determine the effectiveness of the cabon in different applications. Biochar has the ability to retain carbon and this condition is advantageous to prevent the release of carbon back to the atmosphere in the form of carbon dioxide. Application of biochar to soil helps to improve soil fertility and raise agricultural productivity. Biochar also has the ability to reduce carbon dioxide in the flue gas system. There have only been a few studies that discuss on the potential applications of this agriculture waste. The biochar's potential application as carbon sequester for soil application, energy production and dye sorption is being explored in this paper.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2009 Malaysia, Italy, MalaysiaPublisher:MDPI AG Authors: W. A. Wan Ab Karim Ghani; ALIPOUR MOGHADAM ESFAHANI, REZA; M. A. Mohd Salleh; A. B. Alias;doi: 10.3390/en20200258
handle: 11583/2555544
Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell) by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900°C), fluidization ratio (2 to 3.33 m/s), static bed height (10 to 30 mm) and equivalence ratio (0.16 to 0.46) were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol%) could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900°C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidizing velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced.
Energies arrow_drop_down EnergiesOther literature type . 2009License: CC BYFull-Text: http://www.mdpi.com/1996-1073/2/2/258/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en20200258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2009License: CC BYFull-Text: http://www.mdpi.com/1996-1073/2/2/258/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en20200258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2009 Malaysia, Italy, MalaysiaPublisher:MDPI AG Authors: W. A. Wan Ab Karim Ghani; ALIPOUR MOGHADAM ESFAHANI, REZA; M. A. Mohd Salleh; A. B. Alias;doi: 10.3390/en20200258
handle: 11583/2555544
Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell) by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900°C), fluidization ratio (2 to 3.33 m/s), static bed height (10 to 30 mm) and equivalence ratio (0.16 to 0.46) were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol%) could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900°C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidizing velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced.
Energies arrow_drop_down EnergiesOther literature type . 2009License: CC BYFull-Text: http://www.mdpi.com/1996-1073/2/2/258/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en20200258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2009License: CC BYFull-Text: http://www.mdpi.com/1996-1073/2/2/258/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en20200258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 MalaysiaPublisher:MDPI AG Authors: Mohd Salleh, Mohamad Amran; Kisiki, Nsamba Hussein; Mohamed Yusoff, Hamdan; Wan Ab. Karim Ghani, Wan Azlina;doi: 10.3390/en3071344
A biochar produced from empty fruit bunches (EFB) was gasified in a fluidized bed using air to determine gas yield, overall carbon conversion, gas quality, and composition as a function of temperature. The experiment was conducted in the temperature range of 500–850 °C. It was observed that biochar has the potential to replace coal as a gasification agent in power plants. Hydrogen gas from biochar was also optimized during the experiment. High temperatures favor H2 and CO formation. There was an increase of H2 over the temperature range from 500–850 °C from 5.53% to 27.97% (v/v), with a heating value of 30 kJ/g. The C conversion in the same temperature range increased from 76% to 84%. Therefore, there are great prospects for the use of biochar from EFB as an alternative fuel in power plants, as a renewable energy providing an alternative path to biofuels. Results from this work enable us to better understand syn gas production under high treatment temperatures.
Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/7/1344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3071344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/7/1344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3071344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 MalaysiaPublisher:MDPI AG Authors: Mohd Salleh, Mohamad Amran; Kisiki, Nsamba Hussein; Mohamed Yusoff, Hamdan; Wan Ab. Karim Ghani, Wan Azlina;doi: 10.3390/en3071344
A biochar produced from empty fruit bunches (EFB) was gasified in a fluidized bed using air to determine gas yield, overall carbon conversion, gas quality, and composition as a function of temperature. The experiment was conducted in the temperature range of 500–850 °C. It was observed that biochar has the potential to replace coal as a gasification agent in power plants. Hydrogen gas from biochar was also optimized during the experiment. High temperatures favor H2 and CO formation. There was an increase of H2 over the temperature range from 500–850 °C from 5.53% to 27.97% (v/v), with a heating value of 30 kJ/g. The C conversion in the same temperature range increased from 76% to 84%. Therefore, there are great prospects for the use of biochar from EFB as an alternative fuel in power plants, as a renewable energy providing an alternative path to biofuels. Results from this work enable us to better understand syn gas production under high treatment temperatures.
Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/7/1344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3071344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/7/1344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3071344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:American Chemical Society (ACS) Authors: ALIPOUR MOGHADAM ESFAHANI, REZA; Wan Azlina Wan Ab Karim Ghani; Mohamad Amran Mohd Salleh; Salmiaton Ali;doi: 10.1021/ef2010892
handle: 11583/2565144
An experimental study of gasification of palm kernel shell residues from the palm oil industry, as a potential hydrogen feedstock, is investigated. The gasification is conducted in a bench-scale fluidized bed gasifier with 55 mm diameter and 850 mm height. The operating conditions were studied in the following ranges: reaction temperature in gasification zone (750–1100 °C), feeding rate (0.20–1.21 kg/h), feedstock particle size (0.1–5 mm), and equivalence ratio (ER) (0.23–0.27). The increasing temperature and equivalence ratio was found to significantly influence the gas yield (up to 90 wt % conversion on the raw biomass) at 1000 °C and hence hydrogen composition (40 vol %). The feedstock particle size and feeding rate only showed minor influence. In conclusion, palm kernel shell is a potential candidate for hydrogen production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef2010892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef2010892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:American Chemical Society (ACS) Authors: ALIPOUR MOGHADAM ESFAHANI, REZA; Wan Azlina Wan Ab Karim Ghani; Mohamad Amran Mohd Salleh; Salmiaton Ali;doi: 10.1021/ef2010892
handle: 11583/2565144
An experimental study of gasification of palm kernel shell residues from the palm oil industry, as a potential hydrogen feedstock, is investigated. The gasification is conducted in a bench-scale fluidized bed gasifier with 55 mm diameter and 850 mm height. The operating conditions were studied in the following ranges: reaction temperature in gasification zone (750–1100 °C), feeding rate (0.20–1.21 kg/h), feedstock particle size (0.1–5 mm), and equivalence ratio (ER) (0.23–0.27). The increasing temperature and equivalence ratio was found to significantly influence the gas yield (up to 90 wt % conversion on the raw biomass) at 1000 °C and hence hydrogen composition (40 vol %). The feedstock particle size and feeding rate only showed minor influence. In conclusion, palm kernel shell is a potential candidate for hydrogen production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef2010892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef2010892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 MalaysiaPublisher:SAGE Publications Authors: Claoston, N.; Abd. Wahid, Samsuri; Mohd Hanif, Ahmad Husni; Mohd Salleh, Mohamad Amran;pmid: 24643171
Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x14525822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 213 citations 213 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x14525822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 MalaysiaPublisher:SAGE Publications Authors: Claoston, N.; Abd. Wahid, Samsuri; Mohd Hanif, Ahmad Husni; Mohd Salleh, Mohamad Amran;pmid: 24643171
Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x14525822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 213 citations 213 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x14525822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 MalaysiaPublisher:Elsevier BV Authors: Mohammed, M. A. A.; Ali, Salmiaton; Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; +1 AuthorsMohammed, M. A. A.; Ali, Salmiaton; Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; Ahmadun, Fakhru'l-Razi;A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700–1000 °C, feedstock particle size in the range of 0.3–1.0 mm and equivalence ratio (ER) in the range of 0.15–0.35. The main gas species generated, as identified by a gas chromatography (GC), were H2, CO, CO2 and CH4. With temperature increasing from 700 °C to 1000 °C, the total gas yield was enhanced greatly and reached the maximum value (∼92 wt.%, on the raw biomass sample basis) at 1000 °C with big portions of H2 (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H2, CO and CH4 yields. The feedstock particle size of 0.3–0.5 mm, was found to obtain a higher H2 yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m3). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H2 yield (27.31 vol.%) at 850 °C. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB ($2.11/kg = $0.18/Nm3).
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.10.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 210 citations 210 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.10.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 MalaysiaPublisher:Elsevier BV Authors: Mohammed, M. A. A.; Ali, Salmiaton; Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; +1 AuthorsMohammed, M. A. A.; Ali, Salmiaton; Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; Ahmadun, Fakhru'l-Razi;A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700–1000 °C, feedstock particle size in the range of 0.3–1.0 mm and equivalence ratio (ER) in the range of 0.15–0.35. The main gas species generated, as identified by a gas chromatography (GC), were H2, CO, CO2 and CH4. With temperature increasing from 700 °C to 1000 °C, the total gas yield was enhanced greatly and reached the maximum value (∼92 wt.%, on the raw biomass sample basis) at 1000 °C with big portions of H2 (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H2, CO and CH4 yields. The feedstock particle size of 0.3–0.5 mm, was found to obtain a higher H2 yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m3). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H2 yield (27.31 vol.%) at 850 °C. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB ($2.11/kg = $0.18/Nm3).
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.10.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 210 citations 210 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.10.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 MalaysiaPublisher:Springer Science and Business Media LLC Yu, Kai Ling; Show, Pau Loke; Ong, Hwai Chyuan; Ling, Tau Chuan; Chen, Wei-Hsin; Salleh, Mohamad Amran Mohd;Microalgae cultivation and biomass to biochar conversion is a potential approach for global carbon sequestration in microalgal biorefinery. Excessive atmospheric carbon dioxide (CO2) is utilized in microalgal biomass cultivation for biochar production. In the current study, microalgal biomass productivity was determined using different CO2 concentrations for biochar production, and the physicochemical properties of microalgal biochar were characterized to determine its potential applications for carbon sequestration and biorefinery. The indigenous microalga Chlorella vulgaris FSP-E was cultivated in photobioreactors under controlled environment with different CO2 gas concentrations as the sole carbon source. Microalgal biomass pyrolysis was performed thereafter in a fixed-bed reactor to produce biochar and other coproducts. C. vulgaris FSP-E showed a maximum biomass productivity of 0.87 g L−1 day−1. A biochar yield of 26.9% was obtained from pyrolysis under an optimum temperature of 500 °C at a heating rate of 10 °C min−1. C. vulgaris FSP-E biochar showed an alkaline pH value of 8.1 with H/C and O/C atomic ratios beneficial for carbon sequestration and soil application. The potential use of microalgal biochar as an alternative coal was also demonstrated by the increased heating value of 23.42 MJ kg−1. C. vulgaris FSP-E biochar exhibited a surface morphology, thereby suggesting its applicability as a bio-adsorbent. The cultivation of microalgae C. vulgaris FSP-E and the production of its respective biochar is a potential approach as clean technology for carbon sequestration and microalgal biorefinery toward a sustainable environment.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-018-1521-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-018-1521-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 MalaysiaPublisher:Springer Science and Business Media LLC Yu, Kai Ling; Show, Pau Loke; Ong, Hwai Chyuan; Ling, Tau Chuan; Chen, Wei-Hsin; Salleh, Mohamad Amran Mohd;Microalgae cultivation and biomass to biochar conversion is a potential approach for global carbon sequestration in microalgal biorefinery. Excessive atmospheric carbon dioxide (CO2) is utilized in microalgal biomass cultivation for biochar production. In the current study, microalgal biomass productivity was determined using different CO2 concentrations for biochar production, and the physicochemical properties of microalgal biochar were characterized to determine its potential applications for carbon sequestration and biorefinery. The indigenous microalga Chlorella vulgaris FSP-E was cultivated in photobioreactors under controlled environment with different CO2 gas concentrations as the sole carbon source. Microalgal biomass pyrolysis was performed thereafter in a fixed-bed reactor to produce biochar and other coproducts. C. vulgaris FSP-E showed a maximum biomass productivity of 0.87 g L−1 day−1. A biochar yield of 26.9% was obtained from pyrolysis under an optimum temperature of 500 °C at a heating rate of 10 °C min−1. C. vulgaris FSP-E biochar showed an alkaline pH value of 8.1 with H/C and O/C atomic ratios beneficial for carbon sequestration and soil application. The potential use of microalgal biochar as an alternative coal was also demonstrated by the increased heating value of 23.42 MJ kg−1. C. vulgaris FSP-E biochar exhibited a surface morphology, thereby suggesting its applicability as a bio-adsorbent. The cultivation of microalgae C. vulgaris FSP-E and the production of its respective biochar is a potential approach as clean technology for carbon sequestration and microalgal biorefinery toward a sustainable environment.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-018-1521-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-018-1521-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 MalaysiaPublisher:Elsevier BV Khalife, Esmail; Kazerooni, Hanif; Mirsalim, Mostafa; Shojaei, Taha Roodbar; Mohammadi, Pouya; Mohd Salleh, Amran; Najafi, Bahman; Tabatabaei, Meisam;Diminishing fuel resources and stringent emission mandates have demanded cleaner combustion and increased fuel efficiency. Three water addition rates, i.e., 2, 4, and 6 wt% in biodiesel-diesel blend (B5) was investigated herein. Combustion characteristics of the emulsified fuel blends were compared in a naturally-aspirated diesel engine at full load and different engine speeds. More specifically, biodiesel was produced from waste cooking oil (WCO) and to further increase waste utilization, recycled biodiesel wastewater was used as additive in B5. The result obtained showed that low-level water addition (i.e., 2 and 4 wt%) in B5 led to different results from those obtained using higher water addition rates (i.e., >5 wt%) reported by the previous studies. In more details, the findings of the present study revealed that low level water addition in B5 could considerably reduce CO, HC, CO2, and NOx emissions. Among water-containing B5 fuel emulsions, the optimal water addition level in terms of engine performance parameters and emissions was found at 4 wt%. In particular, the emitted CO2, HC, and NOx were decreased by over 8.5%, 28%, and 24%, respectively, at maximum speed of 2500 rpm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 MalaysiaPublisher:Elsevier BV Khalife, Esmail; Kazerooni, Hanif; Mirsalim, Mostafa; Shojaei, Taha Roodbar; Mohammadi, Pouya; Mohd Salleh, Amran; Najafi, Bahman; Tabatabaei, Meisam;Diminishing fuel resources and stringent emission mandates have demanded cleaner combustion and increased fuel efficiency. Three water addition rates, i.e., 2, 4, and 6 wt% in biodiesel-diesel blend (B5) was investigated herein. Combustion characteristics of the emulsified fuel blends were compared in a naturally-aspirated diesel engine at full load and different engine speeds. More specifically, biodiesel was produced from waste cooking oil (WCO) and to further increase waste utilization, recycled biodiesel wastewater was used as additive in B5. The result obtained showed that low-level water addition (i.e., 2 and 4 wt%) in B5 led to different results from those obtained using higher water addition rates (i.e., >5 wt%) reported by the previous studies. In more details, the findings of the present study revealed that low level water addition in B5 could considerably reduce CO, HC, CO2, and NOx emissions. Among water-containing B5 fuel emulsions, the optimal water addition level in terms of engine performance parameters and emissions was found at 4 wt%. In particular, the emitted CO2, HC, and NOx were decreased by over 8.5%, 28%, and 24%, respectively, at maximum speed of 2500 rpm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Informa UK Limited Authors: Wan Azlina Wan Ab Karim Ghani; Hussein Kisiki Nsamba; H. M. Yusuf; Mohamad Amran Mohd Salleh; +1 AuthorsWan Azlina Wan Ab Karim Ghani; Hussein Kisiki Nsamba; H. M. Yusuf; Mohamad Amran Mohd Salleh; Azni Idris;In this study, the effects of equivalence ratio and biochar particle size on high heating value, gas composition, carbon conversion, and gas production from the empty fruit bunch biochar were experimentally investigated in a fluidized bed reactor. Equivalence ratio varied from 0.1 to 0.34, while the size varied from 0.2 mm ≤ s ≥ 1 mm. It was observed that the syngas production increased as the air flow rate increased until equivalence ratio was equivalent to 0.24 and finally decreased with increasing equivalence ratio. In addition, the high heating value of syngas also decreased as equivalence ratio increased. The increase in the particle size from 0.2 mm ≤ s ≥ 1 mm decreased the H2 yield from 34.75 to 25.3%, and decreased the overall syngas production and high heating value. The produced syngas revealed a high heating value in the range of 22.6–52.9 MJ/KG. Meanwhile, the maximum char to gas conversion efficiency achieved was 80.2%. A hydrogen-rich gas was successfully produced through air gasification at...
Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2011.555440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2011.555440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Informa UK Limited Authors: Wan Azlina Wan Ab Karim Ghani; Hussein Kisiki Nsamba; H. M. Yusuf; Mohamad Amran Mohd Salleh; +1 AuthorsWan Azlina Wan Ab Karim Ghani; Hussein Kisiki Nsamba; H. M. Yusuf; Mohamad Amran Mohd Salleh; Azni Idris;In this study, the effects of equivalence ratio and biochar particle size on high heating value, gas composition, carbon conversion, and gas production from the empty fruit bunch biochar were experimentally investigated in a fluidized bed reactor. Equivalence ratio varied from 0.1 to 0.34, while the size varied from 0.2 mm ≤ s ≥ 1 mm. It was observed that the syngas production increased as the air flow rate increased until equivalence ratio was equivalent to 0.24 and finally decreased with increasing equivalence ratio. In addition, the high heating value of syngas also decreased as equivalence ratio increased. The increase in the particle size from 0.2 mm ≤ s ≥ 1 mm decreased the H2 yield from 34.75 to 25.3%, and decreased the overall syngas production and high heating value. The produced syngas revealed a high heating value in the range of 22.6–52.9 MJ/KG. Meanwhile, the maximum char to gas conversion efficiency achieved was 80.2%. A hydrogen-rich gas was successfully produced through air gasification at...
Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2011.555440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2011.555440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Malaysia, Australia, MalaysiaPublisher:American Chemical Society (ACS) Bidita, B. S.; Suraya, A. R.; Shazed, M. A.; Salleh, M. A. Mohd; Idris, A.;doi: 10.1021/ef5002259
A comprehensive experimental study was accomplished to assess the influence of fuel additive in the formulation of water-in-diesel (W/D) nanoemulsions using surfactant in two ways, with and without including fuel additive, and a comparison is made with neat diesel. A range of surfactant concentration (0.25% to 0.40% v/v) was used with varying water concentration (0.7% to 1% v/v) to prepare W/D nanoemulsion fuel. High energy emulsification process was employed for this purpose and attempts to compare between both ways, physical and experimental observations were considered. The destabilization methods, mainly Oswald ripening, was discussed to investigate the stability. The influence of fuel additive over the characteristics of nanoemulsion such as droplet size, stability, viscosity, emulsion calorific value was studied in detail. The droplet size of W/D nanoemulsion fuel was found to be in the range approximately from 2 to 200 nm in both procedures. The engine test bed was utilized to combust the emulsion ...
Energy & Fuels arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef5002259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Fuels arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef5002259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Malaysia, Australia, MalaysiaPublisher:American Chemical Society (ACS) Bidita, B. S.; Suraya, A. R.; Shazed, M. A.; Salleh, M. A. Mohd; Idris, A.;doi: 10.1021/ef5002259
A comprehensive experimental study was accomplished to assess the influence of fuel additive in the formulation of water-in-diesel (W/D) nanoemulsions using surfactant in two ways, with and without including fuel additive, and a comparison is made with neat diesel. A range of surfactant concentration (0.25% to 0.40% v/v) was used with varying water concentration (0.7% to 1% v/v) to prepare W/D nanoemulsion fuel. High energy emulsification process was employed for this purpose and attempts to compare between both ways, physical and experimental observations were considered. The destabilization methods, mainly Oswald ripening, was discussed to investigate the stability. The influence of fuel additive over the characteristics of nanoemulsion such as droplet size, stability, viscosity, emulsion calorific value was studied in detail. The droplet size of W/D nanoemulsion fuel was found to be in the range approximately from 2 to 200 nm in both procedures. The engine test bed was utilized to combust the emulsion ...
Energy & Fuels arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef5002259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Fuels arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef5002259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 MalaysiaPublisher:Elsevier BV Authors: Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; Rebitanim, Nur Zalikha; Rebitanim, Nur Akmal;In Malaysia, abundant agricultural wastes are generated yearly. Therefore it is beneficial to discover new ways to utilize the wastes and employ the carbon source in different industries. Biochar are produced through many heat treatments such as combustion, gasification and pyrolysis for energy generation. The characteristics of these stable carbons such as the physical properties, chemical composition, surface area and surface chemistry determine the effectiveness of the cabon in different applications. Biochar has the ability to retain carbon and this condition is advantageous to prevent the release of carbon back to the atmosphere in the form of carbon dioxide. Application of biochar to soil helps to improve soil fertility and raise agricultural productivity. Biochar also has the ability to reduce carbon dioxide in the flue gas system. There have only been a few studies that discuss on the potential applications of this agriculture waste. The biochar's potential application as carbon sequester for soil application, energy production and dye sorption is being explored in this paper.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 MalaysiaPublisher:Elsevier BV Authors: Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; Rebitanim, Nur Zalikha; Rebitanim, Nur Akmal;In Malaysia, abundant agricultural wastes are generated yearly. Therefore it is beneficial to discover new ways to utilize the wastes and employ the carbon source in different industries. Biochar are produced through many heat treatments such as combustion, gasification and pyrolysis for energy generation. The characteristics of these stable carbons such as the physical properties, chemical composition, surface area and surface chemistry determine the effectiveness of the cabon in different applications. Biochar has the ability to retain carbon and this condition is advantageous to prevent the release of carbon back to the atmosphere in the form of carbon dioxide. Application of biochar to soil helps to improve soil fertility and raise agricultural productivity. Biochar also has the ability to reduce carbon dioxide in the flue gas system. There have only been a few studies that discuss on the potential applications of this agriculture waste. The biochar's potential application as carbon sequester for soil application, energy production and dye sorption is being explored in this paper.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2009 Malaysia, Italy, MalaysiaPublisher:MDPI AG Authors: W. A. Wan Ab Karim Ghani; ALIPOUR MOGHADAM ESFAHANI, REZA; M. A. Mohd Salleh; A. B. Alias;doi: 10.3390/en20200258
handle: 11583/2555544
Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell) by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900°C), fluidization ratio (2 to 3.33 m/s), static bed height (10 to 30 mm) and equivalence ratio (0.16 to 0.46) were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol%) could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900°C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidizing velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced.
Energies arrow_drop_down EnergiesOther literature type . 2009License: CC BYFull-Text: http://www.mdpi.com/1996-1073/2/2/258/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en20200258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2009License: CC BYFull-Text: http://www.mdpi.com/1996-1073/2/2/258/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en20200258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2009 Malaysia, Italy, MalaysiaPublisher:MDPI AG Authors: W. A. Wan Ab Karim Ghani; ALIPOUR MOGHADAM ESFAHANI, REZA; M. A. Mohd Salleh; A. B. Alias;doi: 10.3390/en20200258
handle: 11583/2555544
Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell) by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900°C), fluidization ratio (2 to 3.33 m/s), static bed height (10 to 30 mm) and equivalence ratio (0.16 to 0.46) were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol%) could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900°C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidizing velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced.
Energies arrow_drop_down EnergiesOther literature type . 2009License: CC BYFull-Text: http://www.mdpi.com/1996-1073/2/2/258/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en20200258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2009License: CC BYFull-Text: http://www.mdpi.com/1996-1073/2/2/258/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en20200258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 MalaysiaPublisher:MDPI AG Authors: Mohd Salleh, Mohamad Amran; Kisiki, Nsamba Hussein; Mohamed Yusoff, Hamdan; Wan Ab. Karim Ghani, Wan Azlina;doi: 10.3390/en3071344
A biochar produced from empty fruit bunches (EFB) was gasified in a fluidized bed using air to determine gas yield, overall carbon conversion, gas quality, and composition as a function of temperature. The experiment was conducted in the temperature range of 500–850 °C. It was observed that biochar has the potential to replace coal as a gasification agent in power plants. Hydrogen gas from biochar was also optimized during the experiment. High temperatures favor H2 and CO formation. There was an increase of H2 over the temperature range from 500–850 °C from 5.53% to 27.97% (v/v), with a heating value of 30 kJ/g. The C conversion in the same temperature range increased from 76% to 84%. Therefore, there are great prospects for the use of biochar from EFB as an alternative fuel in power plants, as a renewable energy providing an alternative path to biofuels. Results from this work enable us to better understand syn gas production under high treatment temperatures.
Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/7/1344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3071344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/7/1344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3071344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 MalaysiaPublisher:MDPI AG Authors: Mohd Salleh, Mohamad Amran; Kisiki, Nsamba Hussein; Mohamed Yusoff, Hamdan; Wan Ab. Karim Ghani, Wan Azlina;doi: 10.3390/en3071344
A biochar produced from empty fruit bunches (EFB) was gasified in a fluidized bed using air to determine gas yield, overall carbon conversion, gas quality, and composition as a function of temperature. The experiment was conducted in the temperature range of 500–850 °C. It was observed that biochar has the potential to replace coal as a gasification agent in power plants. Hydrogen gas from biochar was also optimized during the experiment. High temperatures favor H2 and CO formation. There was an increase of H2 over the temperature range from 500–850 °C from 5.53% to 27.97% (v/v), with a heating value of 30 kJ/g. The C conversion in the same temperature range increased from 76% to 84%. Therefore, there are great prospects for the use of biochar from EFB as an alternative fuel in power plants, as a renewable energy providing an alternative path to biofuels. Results from this work enable us to better understand syn gas production under high treatment temperatures.
Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/7/1344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3071344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/7/1344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3071344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:American Chemical Society (ACS) Authors: ALIPOUR MOGHADAM ESFAHANI, REZA; Wan Azlina Wan Ab Karim Ghani; Mohamad Amran Mohd Salleh; Salmiaton Ali;doi: 10.1021/ef2010892
handle: 11583/2565144
An experimental study of gasification of palm kernel shell residues from the palm oil industry, as a potential hydrogen feedstock, is investigated. The gasification is conducted in a bench-scale fluidized bed gasifier with 55 mm diameter and 850 mm height. The operating conditions were studied in the following ranges: reaction temperature in gasification zone (750–1100 °C), feeding rate (0.20–1.21 kg/h), feedstock particle size (0.1–5 mm), and equivalence ratio (ER) (0.23–0.27). The increasing temperature and equivalence ratio was found to significantly influence the gas yield (up to 90 wt % conversion on the raw biomass) at 1000 °C and hence hydrogen composition (40 vol %). The feedstock particle size and feeding rate only showed minor influence. In conclusion, palm kernel shell is a potential candidate for hydrogen production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef2010892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef2010892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:American Chemical Society (ACS) Authors: ALIPOUR MOGHADAM ESFAHANI, REZA; Wan Azlina Wan Ab Karim Ghani; Mohamad Amran Mohd Salleh; Salmiaton Ali;doi: 10.1021/ef2010892
handle: 11583/2565144
An experimental study of gasification of palm kernel shell residues from the palm oil industry, as a potential hydrogen feedstock, is investigated. The gasification is conducted in a bench-scale fluidized bed gasifier with 55 mm diameter and 850 mm height. The operating conditions were studied in the following ranges: reaction temperature in gasification zone (750–1100 °C), feeding rate (0.20–1.21 kg/h), feedstock particle size (0.1–5 mm), and equivalence ratio (ER) (0.23–0.27). The increasing temperature and equivalence ratio was found to significantly influence the gas yield (up to 90 wt % conversion on the raw biomass) at 1000 °C and hence hydrogen composition (40 vol %). The feedstock particle size and feeding rate only showed minor influence. In conclusion, palm kernel shell is a potential candidate for hydrogen production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef2010892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef2010892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 MalaysiaPublisher:SAGE Publications Authors: Claoston, N.; Abd. Wahid, Samsuri; Mohd Hanif, Ahmad Husni; Mohd Salleh, Mohamad Amran;pmid: 24643171
Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x14525822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 213 citations 213 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x14525822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 MalaysiaPublisher:SAGE Publications Authors: Claoston, N.; Abd. Wahid, Samsuri; Mohd Hanif, Ahmad Husni; Mohd Salleh, Mohamad Amran;pmid: 24643171
Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x14525822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 213 citations 213 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Waste Management & R... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x14525822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 MalaysiaPublisher:Elsevier BV Authors: Mohammed, M. A. A.; Ali, Salmiaton; Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; +1 AuthorsMohammed, M. A. A.; Ali, Salmiaton; Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; Ahmadun, Fakhru'l-Razi;A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700–1000 °C, feedstock particle size in the range of 0.3–1.0 mm and equivalence ratio (ER) in the range of 0.15–0.35. The main gas species generated, as identified by a gas chromatography (GC), were H2, CO, CO2 and CH4. With temperature increasing from 700 °C to 1000 °C, the total gas yield was enhanced greatly and reached the maximum value (∼92 wt.%, on the raw biomass sample basis) at 1000 °C with big portions of H2 (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H2, CO and CH4 yields. The feedstock particle size of 0.3–0.5 mm, was found to obtain a higher H2 yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m3). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H2 yield (27.31 vol.%) at 850 °C. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB ($2.11/kg = $0.18/Nm3).
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.10.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 210 citations 210 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.10.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 MalaysiaPublisher:Elsevier BV Authors: Mohammed, M. A. A.; Ali, Salmiaton; Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; +1 AuthorsMohammed, M. A. A.; Ali, Salmiaton; Wan Ab. Karim Ghani, Wan Azlina; Mohd Salleh, Mohamad Amran; Ahmadun, Fakhru'l-Razi;A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700–1000 °C, feedstock particle size in the range of 0.3–1.0 mm and equivalence ratio (ER) in the range of 0.15–0.35. The main gas species generated, as identified by a gas chromatography (GC), were H2, CO, CO2 and CH4. With temperature increasing from 700 °C to 1000 °C, the total gas yield was enhanced greatly and reached the maximum value (∼92 wt.%, on the raw biomass sample basis) at 1000 °C with big portions of H2 (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H2, CO and CH4 yields. The feedstock particle size of 0.3–0.5 mm, was found to obtain a higher H2 yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m3). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H2 yield (27.31 vol.%) at 850 °C. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB ($2.11/kg = $0.18/Nm3).
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.10.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 210 citations 210 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.10.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 MalaysiaPublisher:Springer Science and Business Media LLC Yu, Kai Ling; Show, Pau Loke; Ong, Hwai Chyuan; Ling, Tau Chuan; Chen, Wei-Hsin; Salleh, Mohamad Amran Mohd;Microalgae cultivation and biomass to biochar conversion is a potential approach for global carbon sequestration in microalgal biorefinery. Excessive atmospheric carbon dioxide (CO2) is utilized in microalgal biomass cultivation for biochar production. In the current study, microalgal biomass productivity was determined using different CO2 concentrations for biochar production, and the physicochemical properties of microalgal biochar were characterized to determine its potential applications for carbon sequestration and biorefinery. The indigenous microalga Chlorella vulgaris FSP-E was cultivated in photobioreactors under controlled environment with different CO2 gas concentrations as the sole carbon source. Microalgal biomass pyrolysis was performed thereafter in a fixed-bed reactor to produce biochar and other coproducts. C. vulgaris FSP-E showed a maximum biomass productivity of 0.87 g L−1 day−1. A biochar yield of 26.9% was obtained from pyrolysis under an optimum temperature of 500 °C at a heating rate of 10 °C min−1. C. vulgaris FSP-E biochar showed an alkaline pH value of 8.1 with H/C and O/C atomic ratios beneficial for carbon sequestration and soil application. The potential use of microalgal biochar as an alternative coal was also demonstrated by the increased heating value of 23.42 MJ kg−1. C. vulgaris FSP-E biochar exhibited a surface morphology, thereby suggesting its applicability as a bio-adsorbent. The cultivation of microalgae C. vulgaris FSP-E and the production of its respective biochar is a potential approach as clean technology for carbon sequestration and microalgal biorefinery toward a sustainable environment.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-018-1521-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-018-1521-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 MalaysiaPublisher:Springer Science and Business Media LLC Yu, Kai Ling; Show, Pau Loke; Ong, Hwai Chyuan; Ling, Tau Chuan; Chen, Wei-Hsin; Salleh, Mohamad Amran Mohd;Microalgae cultivation and biomass to biochar conversion is a potential approach for global carbon sequestration in microalgal biorefinery. Excessive atmospheric carbon dioxide (CO2) is utilized in microalgal biomass cultivation for biochar production. In the current study, microalgal biomass productivity was determined using different CO2 concentrations for biochar production, and the physicochemical properties of microalgal biochar were characterized to determine its potential applications for carbon sequestration and biorefinery. The indigenous microalga Chlorella vulgaris FSP-E was cultivated in photobioreactors under controlled environment with different CO2 gas concentrations as the sole carbon source. Microalgal biomass pyrolysis was performed thereafter in a fixed-bed reactor to produce biochar and other coproducts. C. vulgaris FSP-E showed a maximum biomass productivity of 0.87 g L−1 day−1. A biochar yield of 26.9% was obtained from pyrolysis under an optimum temperature of 500 °C at a heating rate of 10 °C min−1. C. vulgaris FSP-E biochar showed an alkaline pH value of 8.1 with H/C and O/C atomic ratios beneficial for carbon sequestration and soil application. The potential use of microalgal biochar as an alternative coal was also demonstrated by the increased heating value of 23.42 MJ kg−1. C. vulgaris FSP-E biochar exhibited a surface morphology, thereby suggesting its applicability as a bio-adsorbent. The cultivation of microalgae C. vulgaris FSP-E and the production of its respective biochar is a potential approach as clean technology for carbon sequestration and microalgal biorefinery toward a sustainable environment.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-018-1521-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-018-1521-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu