- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Hossein Yadegari; Yongliang Li; Mohammad Norouzi Banis; Xifei Li; Biqiong Wang; Qian Sun; Ruying Li; Tsun-Kong Sham; Xiaoyu Cui; Xueliang Sun;doi: 10.1039/c4ee01654h
Chemical composition of the discharge products as well as charging overpotential of the Na–air cell is correlated with the kinetic parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01654h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01654h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Xiangzhong Ren; Huihua Cai; Wei Zhang; Yongliang Li; Peixin Zhang; Libo Deng; Lingna Sun;doi: 10.20964/2016.11.26
International Journa... arrow_drop_down International Journal of Electrochemical ScienceArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20964/2016.11.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrochemical ScienceArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20964/2016.11.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Muhammad Rauf; Ling Yang; Jingwen Wang; Hongwei Mi; Qianling Zhang; Peixin Zhang; Xiangzhong Ren; Yongliang Li;doi: 10.1039/d2se01259f
3D cross-linked CoSe2–NiSe2nanosheets were grown on nickel foam by an electrodeposition route and demonstrated high OER activity.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se01259f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se01259f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Muhammad Rauf; Ling Yang; Jingwen Wang; Hongwei Mi; Qianling Zhang; Peixin Zhang; Xiangzhong Ren; Yongliang Li;doi: 10.1039/d3se90007j
Correction for ‘Manipulation of oxygen evolution reaction kinetics of a free-standing CoSe2–NiSe2 heterostructured electrode by interfacial engineering’ by Muhammad Rauf et al., Sustainable Energy Fuels, 2022, 6, 5392–5399, https://doi.org/10.1039/D2SE01259F.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se90007j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se90007j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Yougui Chen; Shanna Knights; Siyu Ye; Ruying Li; Ying Chen; Dongsheng Geng; Xueliang Sun; Yongliang Li;doi: 10.1039/c0ee00326c
Nitrogen-doped graphene as a metal-free catalyst for oxygen reduction was synthesized by heat-treatment of graphene using ammonia. It was found that the optimum temperature was 900 °C. The resulting catalyst had a very high oxygen reduction reaction (ORR) activity through a four-electron transfer process in oxygen-saturated 0.1 M KOH. Most importantly, the electrocatalytic activity and durability of this material are comparable or better than the commercial Pt/C (loading: 4.85 µgPt cm−2). XPS characterization of these catalysts was tested to identify the active N species for ORR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00326c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1K citations 1,147 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00326c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Zhongxin Song; Junjie Li; Qianling Zhang; Yongliang Li; Xiangzhong Ren; Lei Zhang; Xueliang Sun;doi: 10.1002/cey2.342
AbstractA fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy. Although noble metals show good activity in fuel cell‐related electrochemical reactions, their ever‐increasing price considerably hinders their industrial application. Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts, and this allows for the use of fewer catalysts, saving greatly on the cost. Thus, single‐atom catalysts (SACs) with an atom utilization efficiency of 100% have been widely developed, which show remarkable performance in fuel cells. In this review, we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications. First, we will introduce several effective routes for the synthesis of SACs. The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity. Then, we will systematically summarize the application of Pt group metal (PGM) and nonprecious group metal (non‐PGM) catalysts in membrane electrode assembly of fuel cells. This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Shenghua Ye; Zhida Chen; Guikai Zhang; Wenda Chen; Chao Peng; Xiuyuan Yang; Lirong Zheng; Yongliang Li; Xiangzhong Ren; Huiqun Cao; Dongfeng Xue; Jieshan Qiu; Qianling Zhang; Jianhong Liu;doi: 10.1039/d1ee03097c
Cobalt phosphide is an effective electrocatalyst for NO3− electroreduction into NH3. Phosphorus is crucial for stabilizing the active phase and optimizing energy barriers, and Co 4p orbitals directly participate in the nitrate reduction.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03097c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu201 citations 201 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03097c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Hossein Yadegari; Yongliang Li; Mohammad Norouzi Banis; Xifei Li; Biqiong Wang; Qian Sun; Ruying Li; Tsun-Kong Sham; Xiaoyu Cui; Xueliang Sun;doi: 10.1039/c4ee01654h
Chemical composition of the discharge products as well as charging overpotential of the Na–air cell is correlated with the kinetic parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01654h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01654h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Xiangzhong Ren; Huihua Cai; Wei Zhang; Yongliang Li; Peixin Zhang; Libo Deng; Lingna Sun;doi: 10.20964/2016.11.26
International Journa... arrow_drop_down International Journal of Electrochemical ScienceArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20964/2016.11.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrochemical ScienceArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20964/2016.11.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Muhammad Rauf; Ling Yang; Jingwen Wang; Hongwei Mi; Qianling Zhang; Peixin Zhang; Xiangzhong Ren; Yongliang Li;doi: 10.1039/d2se01259f
3D cross-linked CoSe2–NiSe2nanosheets were grown on nickel foam by an electrodeposition route and demonstrated high OER activity.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se01259f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2se01259f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Muhammad Rauf; Ling Yang; Jingwen Wang; Hongwei Mi; Qianling Zhang; Peixin Zhang; Xiangzhong Ren; Yongliang Li;doi: 10.1039/d3se90007j
Correction for ‘Manipulation of oxygen evolution reaction kinetics of a free-standing CoSe2–NiSe2 heterostructured electrode by interfacial engineering’ by Muhammad Rauf et al., Sustainable Energy Fuels, 2022, 6, 5392–5399, https://doi.org/10.1039/D2SE01259F.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se90007j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se90007j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Yougui Chen; Shanna Knights; Siyu Ye; Ruying Li; Ying Chen; Dongsheng Geng; Xueliang Sun; Yongliang Li;doi: 10.1039/c0ee00326c
Nitrogen-doped graphene as a metal-free catalyst for oxygen reduction was synthesized by heat-treatment of graphene using ammonia. It was found that the optimum temperature was 900 °C. The resulting catalyst had a very high oxygen reduction reaction (ORR) activity through a four-electron transfer process in oxygen-saturated 0.1 M KOH. Most importantly, the electrocatalytic activity and durability of this material are comparable or better than the commercial Pt/C (loading: 4.85 µgPt cm−2). XPS characterization of these catalysts was tested to identify the active N species for ORR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00326c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1K citations 1,147 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00326c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Zhongxin Song; Junjie Li; Qianling Zhang; Yongliang Li; Xiangzhong Ren; Lei Zhang; Xueliang Sun;doi: 10.1002/cey2.342
AbstractA fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy. Although noble metals show good activity in fuel cell‐related electrochemical reactions, their ever‐increasing price considerably hinders their industrial application. Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts, and this allows for the use of fewer catalysts, saving greatly on the cost. Thus, single‐atom catalysts (SACs) with an atom utilization efficiency of 100% have been widely developed, which show remarkable performance in fuel cells. In this review, we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications. First, we will introduce several effective routes for the synthesis of SACs. The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity. Then, we will systematically summarize the application of Pt group metal (PGM) and nonprecious group metal (non‐PGM) catalysts in membrane electrode assembly of fuel cells. This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Shenghua Ye; Zhida Chen; Guikai Zhang; Wenda Chen; Chao Peng; Xiuyuan Yang; Lirong Zheng; Yongliang Li; Xiangzhong Ren; Huiqun Cao; Dongfeng Xue; Jieshan Qiu; Qianling Zhang; Jianhong Liu;doi: 10.1039/d1ee03097c
Cobalt phosphide is an effective electrocatalyst for NO3− electroreduction into NH3. Phosphorus is crucial for stabilizing the active phase and optimizing energy barriers, and Co 4p orbitals directly participate in the nitrate reduction.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03097c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu201 citations 201 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03097c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu