- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Zenodo Todaro, Valeria; Secci, Daniele; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea;Climate change is a growing concern for water resource management. Among water bodies that could be most affected by changes in future climate, great attention must be paid to the aquifers, which many cities and agricultural activities rely on for the necessary freshwater. This work aims to evaluate the impact of climate change on a Tunisian aquifer, one of the pilot sites investigated in the InTheMED project, part of the PRIMA program of the European Union. First, historical temperature and precipitation data at daily scale and groundwater levels at monthly scale recorded in the period 1976-2020 were collected. Then, a two-dimensional finite-difference numerical model of the aquifer was developed and calibrated using MODFLOW. The groundwater numerical model reproduces the whole basin, from the recharge area to the outlet in the Mediterranean Sea. The area is agricultural intensive with a high demand for water. For this reason, the model required a calibration of hydraulic conductivity, recharge and pumping rate. After the calibration, the numerical model was able to estimate the groundwater flow and groundwater levels across the entire basin. To estimate the future climate, different combination of General Climate Models (GCMs) and Regional Climate Models (RCMs) were analyzed. In particular, 17 GCM-RCM combinations of the EURO-CORDEX initiative and according to two Representative Concentration Pathways, the RCP4.5 and RCP8.5 scenarios, were used. Daily mean temperature and precipitation projections, for the period 2006- 2100, were downscaled and bias corrected with reference to the meteorological historical data. These data were then used as input for the calibrated groundwater flow model, keeping water withdrawals from existing wells at 2020 values. The results are presented with reference to the local variations of the water table between the historical and future periods and to their uncertainty due to the variability of the projections of the 17 GCM-RCM combinations. This work was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA programme supported by the European Union’s HORIZON 2020 research and innovation programme under grant agreement No 1923. This work was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA programme supported by the European Union's HORIZON 2020 research and innovation programme under grant agreement No 1923.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8162843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 32 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8162843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2022Publisher:Zenodo D'Oria, Marco; Secci, Daniele; Tanda, Maria Giovanna; Todaro, Valeria; Zanini, Andrea;This deliverable, namely D3.3, is part of Task 3.3 “Downscaling of future climate projections at the case-study scale and their transfer to the Partners”. The aim of D3.3 is to present the future climate data downscaled and corrected at the case-study scale. For the future projections of the precipitation and temperature, the data provided by EURO-CORDEX initiative under two emission scenarios (RCP4.5 and RCP8.5) are used. For the pilot site located in Greece (Tympaki) also sea level data are provided, since it is affected by saltwater intrusion problem. In this report, the main information on the pilot sites, available data, methods of analysis and data repository are presented. The data are downloadable at the link https://doi.org/10.5281/zenodo.7247977 . The data archive also contains specific reports for each pilot site with the aim to support the user in reading and using the data. This project is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7248045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 39 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7248045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euintegration_instructions Research softwarekeyboard_double_arrow_right Software 2023Publisher:Zenodo Secci, Daniele; Todaro, Valeria; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea; Godoy, Vanessa A.; Varouchakis, Emmanouil;MIT License Copyright (c) 2023 (Daniele Secci, Valeria Todaro, Marco D'Oria, Maria Giovanna Tanda, Andrea Zanini, Vanessa A. Godoy, Emmanouil Varouchakis) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE." This project is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923. The data archive InTheMED_WP3_DS_SmartModels is part of Task 3.2 “Training and validation of the models in the case studies” and contains the information needed to train and validate the smart models for the five case study aquifers along with their training and application codes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8297704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8297704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project milestone , Other literature type 2023Publisher:Zenodo Secci, Daniele; Todaro, Valeria; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea;The overall objective of the InTheMED project is to implement innovative and sustainable management tools and remediation strategies for MED aquifers (inland and coastal) in order to mitigate anthropogenic and climate-change threats by creating new long-lasting spaces of social learning among different interdependent stakeholders, NGOs, and scientific researchers in five field case studies. These are located at the two shores of the MED basin, namely in Spain, Greece, Portugal, Tunisia, and Turkey. InTheMED will develop an inclusive process that will establish an ensemble of innovative assessment and management tools and methodologies including a high-resolution monitoring approach, smart modelling, a socio-economic assessment, web-based decision support systems (DSS) and new configurations for governance to validate efficient and sustainable integrated groundwater management in the MED considering both the quantitative and qualitative aspects. This Milestone, namely M3.4, is part of Task 3.4 “Analysis of Different Scenarios” (Lead: UNIPR/ participants: UPV, TUC, IST-ID, CERTE and BU). The aim of Task 3.4 is to simulate different future scenarios considering the impact of climate and socio-economic changes on groundwater resources at the five pilot sites. At this aim, different surrogate models were developed for each case study. The surrogate models will support the implementation of the Fuzzy WebDSS tool (WP6) aimed at assist decision makers in aquifer management. The M3.4 outlines the definition of climate and socio-economic scenarios and reports the application of surrogate models within the context of the selected scenarios. This project is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7896089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 22 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7896089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2023Publisher:Zenodo Todaro, Valeria; Secci, Daniele; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea;The overall objective of the InTheMED project is to implement innovative and sustainable management tools and remediation strategies for MED aquifers (inland and coastal) in order to mitigate anthropogenic and climate-change threats by creating new long-lasting spaces of social learning among different interdependent stakeholders, NGOs, and scientific researchers in five field case studies. These are located at the two shores of the MED basin, namely in Spain, Greece, Portugal, Tunisia, and Turkey. InTheMED will develop an inclusive process that will establish an ensemble of innovative assessment and management tools and methodologies including a high-resolution monitoring approach, smart modelling, a socio-economic assessment, web-based decision support systems (DSS) and new configurations for governance to validate efficient and sustainable integrated groundwater management in the MED considering both the quantitative and qualitative aspects. This Deliverable, namely D3.4, is part of Task 3.4 “Analysis of Different Scenarios” (Lead: UNIPR/ participants: UPV, TUC, IST-ID, CERTE and BU). The aim of Task 3.4 is to simulate different scenarios considering the impact of climate and socio-economic changes on groundwater resources at the five pilot sites. At this aim, different surrogate models were developed for each case study, which are described in Milestone 3.2 (Tanda et al., 2022) and Deliverable 3.2 (Todaro et al., 2023). The surrogate models will support the implementation of the Fuzzy WebDSS tool (Deliverable 6.2; Varouchakis et al., 2023) aimed at assist decision makers in aquifer management. The definition of the scenarios and the description of the application of the surrogate models under these scenarios were presented in Milestone 3.4 (Secci et al., 2023). The D3.4 presents the results of the analysis of the most relevant scenarios in the demo sites. This project is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8199241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8199241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Secci, Daniele; Tanda, Maria Giovanna; D'Oria, Marco; Todaro, Valeria;handle: 11381/2974316
This study develops three different artificial intelligence (AI) models in order to investigate the effects of climate change on groundwater resources using historical records of precipitation, temperature and groundwater levels together with regional climate projections. In particular, the Non-linear Autoregressive Neural Network (NARX), the Long-Short Term Memory Neural Network (LSTM) and the Convolutional Neural Network (CNN) were compared. Considering an aquifer located in northern Italy as a case study, the neural networks were trained to replicate observed groundwater levels by taking as input precipitation and temperature records, and in the case of the NARX also antecedent groundwater levels, on a monthly scale. The trained networks were used to infer groundwater levels until the end of the century based on precipitation and temperature projections provided by an ensemble of 13 Regional Climate Models (RCMs) from the EURO-CORDEX initiative. Two emission pathways were considered: the RCP4.5 and RCP8.5. All the AI models show good performance metrics during the training phase, but NARXs perform poorly compared to the other models during validation and testing. For the future, the NARX and LSTM models predict a decline in groundwater levels, especially for the RCP8.5 scenario, while slight changes are expected using the CNN. As NARXs are not deep learning techniques and CNNs may not be able to extrapolate values outside the training range, LSTMs appear to be better suited for climate change impact evaluations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2023.130359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2023.130359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2018 ItalyAuthors: D’Oria, Marco; COZZI, CHIARA; Tanda, Maria Giovanna;handle: 11381/2857727
This study analyzes the climate change effects on the future precipitation and temperature over the Taro, Parma and Enza River basins, in the Emilia Romagna region, northern Italy. An ensemble of 13 Regional Climate Models and two emission scenarios (RCP 4.5 and RCP 8.5) were adopted. The results are reported in terms of precipitation and mean temperature anomalies between a reference period (RP, 1986-2005) and three future periods: short-term (ST) 2016-2035, medium-term (MT) 2046-2065 and long-term (LT) 2081-2100. With reference to the rainfall data, irregular and slight variations are expected at any season and period; on a yearly scale, changes from -5% to +6% are estimated. On the other hand, a gradual warming of the study domain in the future periods is unequivocal. At annual scale, increments up to +0.75°C at ST, +1.5°C at MT and +2°C at LT are expected under the RCP 4.5, and higher, up to +4°C at LT with the RCP 8.5. In addition, the trend evolution of the climate variables was analyzed using a thirty-year moving time window up to the end of the century. From the results, it is evident that the pattern of the trend gradients follows the pattern of the scenario radiative forcing. ; I cambiamenti climatici rappresentano un fenomeno attuale e molto discusso anche dal punto di vista politico: sono stati rilevati aumenti delle temperature, alterazioni dei regimi pluviometrici, scioglimento di ghiacciai e nevai, e il livello medio del mare è in aumento. Si prevede che tali cambiamenti continueranno e che gli eventi climatici estremi all'origine di pericoli quali alluvioni e siccità diventeranno sempre più frequenti ed intensi. Secondo la maggior parte della comunità scientifica internazionale, molte delle alterazioni verificatesi nell'ultimo secolo sono sostanzialmente dovute all'osservato aumento delle concentrazioni di gas ad effetto serra. Sebbene il cambiamento climatico sia globale, i suoi impatti spesso variano da regione a regione. I principali strumenti disponibili ai ricercatori per analizzare il ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4408/ijege.2018-01.s-05&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4408/ijege.2018-01.s-05&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Italy, SpainPublisher:MDPI AG Todaro, Valeria; D'Oria, Marco; Secci, Daniele; Zanini, Andrea; Tanda, Maria Giovanna;doi: 10.3390/w14162499
handle: 10251/202989 , 11381/2929571
The Mediterranean region is one of the most responsive areas to climate change and was identified as a major “hot-spot” based on global climate change analyses. This study provides insight into local climate changes in the Mediterranean region under the scope of the InTheMED project, which is part of the PRIMA programme. Precipitation and temperature were analyzed in an historical period and until the end of this century for five pilot sites, located between the two shores of the Mediterranean region. We used an ensemble of 17 Regional Climate Models, developed in the framework of the EURO-CORDEX initiative, under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Over the historical period, the temperature presents upward trends, which are statistically significant for some sites, while precipitation does not show significant tendencies. These trends will be maintained in the future as predicted by the climate models projections: all models indicate a progressive and robust warming in all study areas and moderate change in total annual precipitation, but some seasonal variations are identified. Future changes in droughts events over the Mediterranean region were studied considering the maximum duration of the heat waves, their peak temperature, and the number of consecutive dry days. All pilot sites are expected to increase the maximum duration of heat waves and their peak temperature. Furthermore, the maximum number of consecutive dry days is expected to increase for most of the study areas.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/16/2499/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: http://hdl.handle.net/11381/2929571Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14162499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 72visibility views 72 download downloads 66 Powered bymore_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/16/2499/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: http://hdl.handle.net/11381/2929571Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14162499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Marco D'Oria; Massimo Ferraresi; Maria Giovanna Tanda;handle: 11381/2838267
Abstract This paper analyzes the historical precipitation and temperature trends and the future climate projections with reference to the northern part of Tuscany (Italy). The trends are identified and quantified at monthly and annual scale at gauging stations with data collected for long periods (60–90 years). An ensemble of 13 Regional Climate Models (RCMs), based on two Representative Concentration Pathways (RCP4.5 and RCP8.5), was then used to assess local scale future precipitation and temperature projections and to represent the uncertainty in the results. The historical data highlight a general decrease of the annual rainfall at a mean rate of 22 mm per decade but, in many cases, the tendencies are not statistically significant. Conversely, the annual mean temperature exhibits an upward trend, statistically significant in the majority of cases, with a warming rate of about 0.1 °C per decade. With reference to the model projections and the annual precipitation, the results are not concordant; the deviations between models in the same period are higher than the future changes at medium- (2031–2040) and long-term (2051–2060) and highlight that the model uncertainty and variability is high. According to the climate model projections, the warming of the study area is unequivocal; a mean positive increment of 0.8 °C at medium-term and 1.1 °C at long-term is expected with respect to the reference period (2003–2012) and the scenario RCP4.5; the increments grow to 0.9 °C and 1.9 °C for the RCP8.5. Finally, in order to check the observed climate change signals, the climate model projections were compared with the trends based on the historical data. A satisfactory agreement is obtained with reference to the precipitation; a systematic underestimation of the trend values with respect to the models, at medium- and long-term, is observed for the temperature data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2017.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2017.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Zenodo Todaro, Valeria; Secci, Daniele; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea; Azevedo, Leonardo; Ghrabi, Ahmed; Gómez-Hernández, J. Jaime; Jomaa, Seifeddine; Karatzas, George P.; Saysel, Ali Kerem;The objective of this study is to provide an overview of local climate change over the Mediterranean (MED) area under the scope of the InTheMED project, EU funded in the framework of the PRIMA programme. Future precipitation and temperature projections are assessed until the end of this century for five different pilot sites, located in the MED region. To this end, the outputs of 17 Regional Climate Models under the RCP4.5 and RCP8.5 scenarios are used. For each pilot site, the raw climate model data were downscaled at each monitoring station location and bias-corrected on the basis of observations recorded in a 30-year historical period. The changes in the annual precipitation are heterogeneous across the five pilot sites: a negligible variation is expected for some areas and a decrease of up to 30% for others. On the contrary, a significant increase in temperature is expected for all sites, confirming the ongoing warming in the MED region. This research is supported by the PRIMA programme under grant agreement No1923, project InTheMED. The PRIMA programme is supported by the European Union.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7086017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 18 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7086017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Zenodo Todaro, Valeria; Secci, Daniele; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea;Climate change is a growing concern for water resource management. Among water bodies that could be most affected by changes in future climate, great attention must be paid to the aquifers, which many cities and agricultural activities rely on for the necessary freshwater. This work aims to evaluate the impact of climate change on a Tunisian aquifer, one of the pilot sites investigated in the InTheMED project, part of the PRIMA program of the European Union. First, historical temperature and precipitation data at daily scale and groundwater levels at monthly scale recorded in the period 1976-2020 were collected. Then, a two-dimensional finite-difference numerical model of the aquifer was developed and calibrated using MODFLOW. The groundwater numerical model reproduces the whole basin, from the recharge area to the outlet in the Mediterranean Sea. The area is agricultural intensive with a high demand for water. For this reason, the model required a calibration of hydraulic conductivity, recharge and pumping rate. After the calibration, the numerical model was able to estimate the groundwater flow and groundwater levels across the entire basin. To estimate the future climate, different combination of General Climate Models (GCMs) and Regional Climate Models (RCMs) were analyzed. In particular, 17 GCM-RCM combinations of the EURO-CORDEX initiative and according to two Representative Concentration Pathways, the RCP4.5 and RCP8.5 scenarios, were used. Daily mean temperature and precipitation projections, for the period 2006- 2100, were downscaled and bias corrected with reference to the meteorological historical data. These data were then used as input for the calibrated groundwater flow model, keeping water withdrawals from existing wells at 2020 values. The results are presented with reference to the local variations of the water table between the historical and future periods and to their uncertainty due to the variability of the projections of the 17 GCM-RCM combinations. This work was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA programme supported by the European Union’s HORIZON 2020 research and innovation programme under grant agreement No 1923. This work was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA programme supported by the European Union's HORIZON 2020 research and innovation programme under grant agreement No 1923.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8162843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 32 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8162843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2022Publisher:Zenodo D'Oria, Marco; Secci, Daniele; Tanda, Maria Giovanna; Todaro, Valeria; Zanini, Andrea;This deliverable, namely D3.3, is part of Task 3.3 “Downscaling of future climate projections at the case-study scale and their transfer to the Partners”. The aim of D3.3 is to present the future climate data downscaled and corrected at the case-study scale. For the future projections of the precipitation and temperature, the data provided by EURO-CORDEX initiative under two emission scenarios (RCP4.5 and RCP8.5) are used. For the pilot site located in Greece (Tympaki) also sea level data are provided, since it is affected by saltwater intrusion problem. In this report, the main information on the pilot sites, available data, methods of analysis and data repository are presented. The data are downloadable at the link https://doi.org/10.5281/zenodo.7247977 . The data archive also contains specific reports for each pilot site with the aim to support the user in reading and using the data. This project is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7248045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 39 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7248045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euintegration_instructions Research softwarekeyboard_double_arrow_right Software 2023Publisher:Zenodo Secci, Daniele; Todaro, Valeria; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea; Godoy, Vanessa A.; Varouchakis, Emmanouil;MIT License Copyright (c) 2023 (Daniele Secci, Valeria Todaro, Marco D'Oria, Maria Giovanna Tanda, Andrea Zanini, Vanessa A. Godoy, Emmanouil Varouchakis) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE." This project is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923. The data archive InTheMED_WP3_DS_SmartModels is part of Task 3.2 “Training and validation of the models in the case studies” and contains the information needed to train and validate the smart models for the five case study aquifers along with their training and application codes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8297704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8297704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project milestone , Other literature type 2023Publisher:Zenodo Secci, Daniele; Todaro, Valeria; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea;The overall objective of the InTheMED project is to implement innovative and sustainable management tools and remediation strategies for MED aquifers (inland and coastal) in order to mitigate anthropogenic and climate-change threats by creating new long-lasting spaces of social learning among different interdependent stakeholders, NGOs, and scientific researchers in five field case studies. These are located at the two shores of the MED basin, namely in Spain, Greece, Portugal, Tunisia, and Turkey. InTheMED will develop an inclusive process that will establish an ensemble of innovative assessment and management tools and methodologies including a high-resolution monitoring approach, smart modelling, a socio-economic assessment, web-based decision support systems (DSS) and new configurations for governance to validate efficient and sustainable integrated groundwater management in the MED considering both the quantitative and qualitative aspects. This Milestone, namely M3.4, is part of Task 3.4 “Analysis of Different Scenarios” (Lead: UNIPR/ participants: UPV, TUC, IST-ID, CERTE and BU). The aim of Task 3.4 is to simulate different future scenarios considering the impact of climate and socio-economic changes on groundwater resources at the five pilot sites. At this aim, different surrogate models were developed for each case study. The surrogate models will support the implementation of the Fuzzy WebDSS tool (WP6) aimed at assist decision makers in aquifer management. The M3.4 outlines the definition of climate and socio-economic scenarios and reports the application of surrogate models within the context of the selected scenarios. This project is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7896089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 22 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7896089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2023Publisher:Zenodo Todaro, Valeria; Secci, Daniele; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea;The overall objective of the InTheMED project is to implement innovative and sustainable management tools and remediation strategies for MED aquifers (inland and coastal) in order to mitigate anthropogenic and climate-change threats by creating new long-lasting spaces of social learning among different interdependent stakeholders, NGOs, and scientific researchers in five field case studies. These are located at the two shores of the MED basin, namely in Spain, Greece, Portugal, Tunisia, and Turkey. InTheMED will develop an inclusive process that will establish an ensemble of innovative assessment and management tools and methodologies including a high-resolution monitoring approach, smart modelling, a socio-economic assessment, web-based decision support systems (DSS) and new configurations for governance to validate efficient and sustainable integrated groundwater management in the MED considering both the quantitative and qualitative aspects. This Deliverable, namely D3.4, is part of Task 3.4 “Analysis of Different Scenarios” (Lead: UNIPR/ participants: UPV, TUC, IST-ID, CERTE and BU). The aim of Task 3.4 is to simulate different scenarios considering the impact of climate and socio-economic changes on groundwater resources at the five pilot sites. At this aim, different surrogate models were developed for each case study, which are described in Milestone 3.2 (Tanda et al., 2022) and Deliverable 3.2 (Todaro et al., 2023). The surrogate models will support the implementation of the Fuzzy WebDSS tool (Deliverable 6.2; Varouchakis et al., 2023) aimed at assist decision makers in aquifer management. The definition of the scenarios and the description of the application of the surrogate models under these scenarios were presented in Milestone 3.4 (Secci et al., 2023). The D3.4 presents the results of the analysis of the most relevant scenarios in the demo sites. This project is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8199241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8199241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Secci, Daniele; Tanda, Maria Giovanna; D'Oria, Marco; Todaro, Valeria;handle: 11381/2974316
This study develops three different artificial intelligence (AI) models in order to investigate the effects of climate change on groundwater resources using historical records of precipitation, temperature and groundwater levels together with regional climate projections. In particular, the Non-linear Autoregressive Neural Network (NARX), the Long-Short Term Memory Neural Network (LSTM) and the Convolutional Neural Network (CNN) were compared. Considering an aquifer located in northern Italy as a case study, the neural networks were trained to replicate observed groundwater levels by taking as input precipitation and temperature records, and in the case of the NARX also antecedent groundwater levels, on a monthly scale. The trained networks were used to infer groundwater levels until the end of the century based on precipitation and temperature projections provided by an ensemble of 13 Regional Climate Models (RCMs) from the EURO-CORDEX initiative. Two emission pathways were considered: the RCP4.5 and RCP8.5. All the AI models show good performance metrics during the training phase, but NARXs perform poorly compared to the other models during validation and testing. For the future, the NARX and LSTM models predict a decline in groundwater levels, especially for the RCP8.5 scenario, while slight changes are expected using the CNN. As NARXs are not deep learning techniques and CNNs may not be able to extrapolate values outside the training range, LSTMs appear to be better suited for climate change impact evaluations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2023.130359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2023.130359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2018 ItalyAuthors: D’Oria, Marco; COZZI, CHIARA; Tanda, Maria Giovanna;handle: 11381/2857727
This study analyzes the climate change effects on the future precipitation and temperature over the Taro, Parma and Enza River basins, in the Emilia Romagna region, northern Italy. An ensemble of 13 Regional Climate Models and two emission scenarios (RCP 4.5 and RCP 8.5) were adopted. The results are reported in terms of precipitation and mean temperature anomalies between a reference period (RP, 1986-2005) and three future periods: short-term (ST) 2016-2035, medium-term (MT) 2046-2065 and long-term (LT) 2081-2100. With reference to the rainfall data, irregular and slight variations are expected at any season and period; on a yearly scale, changes from -5% to +6% are estimated. On the other hand, a gradual warming of the study domain in the future periods is unequivocal. At annual scale, increments up to +0.75°C at ST, +1.5°C at MT and +2°C at LT are expected under the RCP 4.5, and higher, up to +4°C at LT with the RCP 8.5. In addition, the trend evolution of the climate variables was analyzed using a thirty-year moving time window up to the end of the century. From the results, it is evident that the pattern of the trend gradients follows the pattern of the scenario radiative forcing. ; I cambiamenti climatici rappresentano un fenomeno attuale e molto discusso anche dal punto di vista politico: sono stati rilevati aumenti delle temperature, alterazioni dei regimi pluviometrici, scioglimento di ghiacciai e nevai, e il livello medio del mare è in aumento. Si prevede che tali cambiamenti continueranno e che gli eventi climatici estremi all'origine di pericoli quali alluvioni e siccità diventeranno sempre più frequenti ed intensi. Secondo la maggior parte della comunità scientifica internazionale, molte delle alterazioni verificatesi nell'ultimo secolo sono sostanzialmente dovute all'osservato aumento delle concentrazioni di gas ad effetto serra. Sebbene il cambiamento climatico sia globale, i suoi impatti spesso variano da regione a regione. I principali strumenti disponibili ai ricercatori per analizzare il ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4408/ijege.2018-01.s-05&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4408/ijege.2018-01.s-05&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Italy, SpainPublisher:MDPI AG Todaro, Valeria; D'Oria, Marco; Secci, Daniele; Zanini, Andrea; Tanda, Maria Giovanna;doi: 10.3390/w14162499
handle: 10251/202989 , 11381/2929571
The Mediterranean region is one of the most responsive areas to climate change and was identified as a major “hot-spot” based on global climate change analyses. This study provides insight into local climate changes in the Mediterranean region under the scope of the InTheMED project, which is part of the PRIMA programme. Precipitation and temperature were analyzed in an historical period and until the end of this century for five pilot sites, located between the two shores of the Mediterranean region. We used an ensemble of 17 Regional Climate Models, developed in the framework of the EURO-CORDEX initiative, under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Over the historical period, the temperature presents upward trends, which are statistically significant for some sites, while precipitation does not show significant tendencies. These trends will be maintained in the future as predicted by the climate models projections: all models indicate a progressive and robust warming in all study areas and moderate change in total annual precipitation, but some seasonal variations are identified. Future changes in droughts events over the Mediterranean region were studied considering the maximum duration of the heat waves, their peak temperature, and the number of consecutive dry days. All pilot sites are expected to increase the maximum duration of heat waves and their peak temperature. Furthermore, the maximum number of consecutive dry days is expected to increase for most of the study areas.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/16/2499/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: http://hdl.handle.net/11381/2929571Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14162499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 72visibility views 72 download downloads 66 Powered bymore_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/16/2499/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: http://hdl.handle.net/11381/2929571Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14162499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Marco D'Oria; Massimo Ferraresi; Maria Giovanna Tanda;handle: 11381/2838267
Abstract This paper analyzes the historical precipitation and temperature trends and the future climate projections with reference to the northern part of Tuscany (Italy). The trends are identified and quantified at monthly and annual scale at gauging stations with data collected for long periods (60–90 years). An ensemble of 13 Regional Climate Models (RCMs), based on two Representative Concentration Pathways (RCP4.5 and RCP8.5), was then used to assess local scale future precipitation and temperature projections and to represent the uncertainty in the results. The historical data highlight a general decrease of the annual rainfall at a mean rate of 22 mm per decade but, in many cases, the tendencies are not statistically significant. Conversely, the annual mean temperature exhibits an upward trend, statistically significant in the majority of cases, with a warming rate of about 0.1 °C per decade. With reference to the model projections and the annual precipitation, the results are not concordant; the deviations between models in the same period are higher than the future changes at medium- (2031–2040) and long-term (2051–2060) and highlight that the model uncertainty and variability is high. According to the climate model projections, the warming of the study area is unequivocal; a mean positive increment of 0.8 °C at medium-term and 1.1 °C at long-term is expected with respect to the reference period (2003–2012) and the scenario RCP4.5; the increments grow to 0.9 °C and 1.9 °C for the RCP8.5. Finally, in order to check the observed climate change signals, the climate model projections were compared with the trends based on the historical data. A satisfactory agreement is obtained with reference to the precipitation; a systematic underestimation of the trend values with respect to the models, at medium- and long-term, is observed for the temperature data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2017.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2017.10.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Zenodo Todaro, Valeria; Secci, Daniele; D'Oria, Marco; Tanda, Maria Giovanna; Zanini, Andrea; Azevedo, Leonardo; Ghrabi, Ahmed; Gómez-Hernández, J. Jaime; Jomaa, Seifeddine; Karatzas, George P.; Saysel, Ali Kerem;The objective of this study is to provide an overview of local climate change over the Mediterranean (MED) area under the scope of the InTheMED project, EU funded in the framework of the PRIMA programme. Future precipitation and temperature projections are assessed until the end of this century for five different pilot sites, located in the MED region. To this end, the outputs of 17 Regional Climate Models under the RCP4.5 and RCP8.5 scenarios are used. For each pilot site, the raw climate model data were downscaled at each monitoring station location and bias-corrected on the basis of observations recorded in a 30-year historical period. The changes in the annual precipitation are heterogeneous across the five pilot sites: a negligible variation is expected for some areas and a decrease of up to 30% for others. On the contrary, a significant increase in temperature is expected for all sites, confirming the ongoing warming in the MED region. This research is supported by the PRIMA programme under grant agreement No1923, project InTheMED. The PRIMA programme is supported by the European Union.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7086017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 18 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7086017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu