- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2007 United Kingdom, ItalyPublisher:American Geophysical Union (AGU) Norbert Schmidbauer; Ronald G. Prinn; Chris Rene Lunder; Jian Yu Huang; Konrad Stemmler; Konrad Stemmler; Derek M. Cunnold; Frode Stordal; R. G. Derwent; Peter Simmonds; Doris Folini; Ray F. Weiss; R. H. J. Wang; L. W. Porter; Graham Nickless; Archie McCulloch; Alistair J. Manning; Jgor Arduini; B. L. Dunse; Paul J. Fraser; B. R. Greally; Simon O'Doherty; Ove Hermansen; Michela Maione; Stefan Reimann; Peter K. Salameh; Paul B. Krummel; Martin K. Vollmer;Ground‐based in situ measurements of 1,1‐difluoroethane (HFC‐152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC‐152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC‐152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC‐152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC‐152a from 1994 to 2004 are derived using the global mean HFC‐152a observations and a 12‐box 2‐D model. The global emission of HFC‐152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above‐baseline elevations in the HFC‐152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5–15% of global emissions for 1,1‐difluoroethane, while the Australian contribution is negligible at 5–10 tonnes/year, <0.05% of global emissions.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 242 citations 242 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United Kingdom, ItalyPublisher:American Geophysical Union (AGU) Norbert Schmidbauer; Ronald G. Prinn; Chris Rene Lunder; Jian Yu Huang; Konrad Stemmler; Konrad Stemmler; Derek M. Cunnold; Frode Stordal; R. G. Derwent; Peter Simmonds; Doris Folini; Ray F. Weiss; R. H. J. Wang; L. W. Porter; Graham Nickless; Archie McCulloch; Alistair J. Manning; Jgor Arduini; B. L. Dunse; Paul J. Fraser; B. R. Greally; Simon O'Doherty; Ove Hermansen; Michela Maione; Stefan Reimann; Peter K. Salameh; Paul B. Krummel; Martin K. Vollmer;Ground‐based in situ measurements of 1,1‐difluoroethane (HFC‐152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC‐152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC‐152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC‐152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC‐152a from 1994 to 2004 are derived using the global mean HFC‐152a observations and a 12‐box 2‐D model. The global emission of HFC‐152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above‐baseline elevations in the HFC‐152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5–15% of global emissions for 1,1‐difluoroethane, while the Australian contribution is negligible at 5–10 tonnes/year, <0.05% of global emissions.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 242 citations 242 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | PARISEC| PARISAnnadate, Saurabh; Mancinelli, Enrico; Gonella, Barbara; Moricci, Federica; O'Doherty, Simon; Stanley, Kieran; Young, Dickon; Vollmer, Martin K.; Cesari, Rita; Falasca, Serena; Giostra, Umberto; Maione, Michela; Arduini, Jgor;handle: 11576/2754071
Abstract HFC-134a is the most prevalent hydrofluorocarbon used as a replacement for ozone-depleting CFCs and HCFCs. Due to its high global warming potential, it is regulated under various European and global frameworks, underscoring the importance of tracking its emissions. Emissions derived by the commonly used, bottom-up, methodology are affected by a certain degree of uncertainty. The bottom-up estimates can be aided with an independent top-down estimate based on atmospheric observations combined with an atmospheric transport model. This study presents HFC-134a emissions for Europe, with a specific focus on Italy, from 2008 to 2023. The emissions were estimated using a Bayesian inversion methodology, based on atmospheric observations collected at four European stations. Our analysis reveals a slightly increasing trend in HFC-134a emissions for Italy from 2008 to 2015 of 0.17 $${\mathrm{Gg\,yr}^{-1}}$$ Gg yr - 1 , followed by a steady decrease thereafter, highlighting the effect of European regulation on fluorinated gases that came into force in 2014. We observed a reduction in HFC-134a emissions in the Po Basin inferred from the inversion method for 2020, likely due to mobility restrictions imposed during the COVID-19 pandemic. The observed mild seasonality in emissions may be partly attributed to higher air-conditioning activity during summer. Comparison with the Italian National Emission Inventory indicates an improvement in iterative bottom-up estimates, with the 2024 inventory emission trend post-2015 aligning closely with our inversion results. This study emphasises the need for collaboration between the two independent approaches to enhance the accuracy of emission estimates. Such cooperation is crucial to narrowing the gap in quantifying emissions of potent greenhouse gases and effectively assessing the progress of international policies and regulations.
Archivio istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12302-025-01081-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12302-025-01081-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | PARISEC| PARISAnnadate, Saurabh; Mancinelli, Enrico; Gonella, Barbara; Moricci, Federica; O'Doherty, Simon; Stanley, Kieran; Young, Dickon; Vollmer, Martin K.; Cesari, Rita; Falasca, Serena; Giostra, Umberto; Maione, Michela; Arduini, Jgor;handle: 11576/2754071
Abstract HFC-134a is the most prevalent hydrofluorocarbon used as a replacement for ozone-depleting CFCs and HCFCs. Due to its high global warming potential, it is regulated under various European and global frameworks, underscoring the importance of tracking its emissions. Emissions derived by the commonly used, bottom-up, methodology are affected by a certain degree of uncertainty. The bottom-up estimates can be aided with an independent top-down estimate based on atmospheric observations combined with an atmospheric transport model. This study presents HFC-134a emissions for Europe, with a specific focus on Italy, from 2008 to 2023. The emissions were estimated using a Bayesian inversion methodology, based on atmospheric observations collected at four European stations. Our analysis reveals a slightly increasing trend in HFC-134a emissions for Italy from 2008 to 2015 of 0.17 $${\mathrm{Gg\,yr}^{-1}}$$ Gg yr - 1 , followed by a steady decrease thereafter, highlighting the effect of European regulation on fluorinated gases that came into force in 2014. We observed a reduction in HFC-134a emissions in the Po Basin inferred from the inversion method for 2020, likely due to mobility restrictions imposed during the COVID-19 pandemic. The observed mild seasonality in emissions may be partly attributed to higher air-conditioning activity during summer. Comparison with the Italian National Emission Inventory indicates an improvement in iterative bottom-up estimates, with the 2024 inventory emission trend post-2015 aligning closely with our inversion results. This study emphasises the need for collaboration between the two independent approaches to enhance the accuracy of emission estimates. Such cooperation is crucial to narrowing the gap in quantifying emissions of potent greenhouse gases and effectively assessing the progress of international policies and regulations.
Archivio istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12302-025-01081-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12302-025-01081-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Norway, United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | INGOS, MIUREC| INGOS ,MIURPaolo Bonasoni; Jgor Arduini; Jgor Arduini; Michela Maione; Francesco Graziosi; L. J. M. Kuijpers; Simon O'Doherty; Andreas Stohl; F. Furlani; Umberto Giostra; Stephen A. Montzka; Stephen A. Montzka; Ben R. Miller; Ben R. Miller; Ben R. Miller;HCFC-22 (CHClF2), a stratospherie ozone depleting substance and a powerful greenhouse gas, is the third most abundant anthropogenic halocarbon in the atmosphere. Primarily used in refrigeration and air conditioning systems, its global production and consumption have increased during the last 60 years, with the global increases in the last decade mainly attributable to developing countries. In 2007, an adjustment to the Montreal Protocol for Substances that Deplete the Ozone Layer called for an accelerated phase out of HCFCs, implying a 75% reduction (base year 1989) of HCFC production and consumption by 2010 in developed countries against the previous 65% reduction. In Europe HCFC-22 is continuously monitored at the two sites Mace Head (Ireland) and Monte Cimone (Italy). Combining atmospheric observations with a Bayesian inversion technique, we estimated fluxes of HCFC-22 from Europe and from eight macro-areas within it, over an 11-year period from January 2002 to December 2012, during which the accelerated restrictions on HCFCs production and consumption have entered into force. According to our study, the maximum emissions over the entire domain was in 2003 (38.2 +/- 4.7 Gg yr(-1)), and the minimum in 2012 (12.1 +/- 2.0 Gg yr(-1)); emissions continuously decreased between these years, except for secondary maxima in the 2008 and 2010. Despite such a decrease in regional emissions, background values of HCFC-22 measured at the two European stations over 2002-2012 are still increasing as a consequence of global emissions, in part from developing countries, with an average trend of ca 7.0 ppt yr(-1). However, the observations at the two European stations show also that since 2008 a decrease in the global growth rate has occurred. In general, our European emission estimates are in good agreement with those reported by previous studies that used different techniques. Since the currently dominant emission source of HCFC-22 is from banks, we assess the banks' size and their contribution to the total European emissions up to 2030, and we project a fast decrease approaching negligible emissions in the last five years of the considered period. Finally, inversions conducted over three month periods showed evidence for a seasonal cycle in emissions in regions in the Mediterranean basin but not outside it. Emissions derived from regions in the Mediterranean basin were ca. 25% higher in warmer months than in colder months. (C) 2015 The Authors. Published by Elsevier Ltd.
Atmospheric Environm... arrow_drop_down Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.at...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.at...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Norway, United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | INGOS, MIUREC| INGOS ,MIURPaolo Bonasoni; Jgor Arduini; Jgor Arduini; Michela Maione; Francesco Graziosi; L. J. M. Kuijpers; Simon O'Doherty; Andreas Stohl; F. Furlani; Umberto Giostra; Stephen A. Montzka; Stephen A. Montzka; Ben R. Miller; Ben R. Miller; Ben R. Miller;HCFC-22 (CHClF2), a stratospherie ozone depleting substance and a powerful greenhouse gas, is the third most abundant anthropogenic halocarbon in the atmosphere. Primarily used in refrigeration and air conditioning systems, its global production and consumption have increased during the last 60 years, with the global increases in the last decade mainly attributable to developing countries. In 2007, an adjustment to the Montreal Protocol for Substances that Deplete the Ozone Layer called for an accelerated phase out of HCFCs, implying a 75% reduction (base year 1989) of HCFC production and consumption by 2010 in developed countries against the previous 65% reduction. In Europe HCFC-22 is continuously monitored at the two sites Mace Head (Ireland) and Monte Cimone (Italy). Combining atmospheric observations with a Bayesian inversion technique, we estimated fluxes of HCFC-22 from Europe and from eight macro-areas within it, over an 11-year period from January 2002 to December 2012, during which the accelerated restrictions on HCFCs production and consumption have entered into force. According to our study, the maximum emissions over the entire domain was in 2003 (38.2 +/- 4.7 Gg yr(-1)), and the minimum in 2012 (12.1 +/- 2.0 Gg yr(-1)); emissions continuously decreased between these years, except for secondary maxima in the 2008 and 2010. Despite such a decrease in regional emissions, background values of HCFC-22 measured at the two European stations over 2002-2012 are still increasing as a consequence of global emissions, in part from developing countries, with an average trend of ca 7.0 ppt yr(-1). However, the observations at the two European stations show also that since 2008 a decrease in the global growth rate has occurred. In general, our European emission estimates are in good agreement with those reported by previous studies that used different techniques. Since the currently dominant emission source of HCFC-22 is from banks, we assess the banks' size and their contribution to the total European emissions up to 2030, and we project a fast decrease approaching negligible emissions in the last five years of the considered period. Finally, inversions conducted over three month periods showed evidence for a seasonal cycle in emissions in regions in the Mediterranean basin but not outside it. Emissions derived from regions in the Mediterranean basin were ca. 25% higher in warmer months than in colder months. (C) 2015 The Authors. Published by Elsevier Ltd.
Atmospheric Environm... arrow_drop_down Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.at...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.at...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, United States, United Kingdom, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | INGOSEC| INGOSLunt, Mark F; Rigby, Matthew; Ganesan, Anita L; Manning, Alistair J; Prinn, Ronald G; O'Doherty, Simon; Mühle, Jens; Harth, Christina M; Salameh, Peter K; Arnold, Tim; Weiss, Ray F; Saito, Takuya; Yokouchi, Yoko; Krummel, Paul B; Steele, L. Paul; Fraser, Paul J; Li, Shanlan; Park, Sunyoung; Reimann, Stefan; Vollmer, Martin K; Lunder, Chris; Hermansen, Ove; Schmidbauer, Norbert; MAIONE, MICHELA; ARDUINI, JGOR; Young, Dickon; Simmonds, Peter G.;pmid: 25918401
pmc: PMC4434701
Significance Hydrofluorocarbons (HFCs) are among the atmosphere’s fastest growing, and most potent, greenhouse gases. Proposals have been made to phase down their use over the coming decades. Such initiatives may largely be informed by existing emissions inventories, which, we show, are the subject of significant uncertainty. In this work, we use atmospheric models and measurements to examine the accuracy of these inventories for five major HFCs. We show that, when aggregated together, reported emissions of these HFCs from developed countries are consistent with the atmospheric measurements, and almost half of global emissions now originate from nonreporting countries. However, the agreement between our results and the inventory breaks down for individual HFC emissions, suggesting inaccuracies in the reporting methods for individual compounds.
Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/5121g5q5Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data PortalDSpace@MIT (Massachusetts Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1420247112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/5121g5q5Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data PortalDSpace@MIT (Massachusetts Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1420247112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, United States, United Kingdom, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | INGOSEC| INGOSLunt, Mark F; Rigby, Matthew; Ganesan, Anita L; Manning, Alistair J; Prinn, Ronald G; O'Doherty, Simon; Mühle, Jens; Harth, Christina M; Salameh, Peter K; Arnold, Tim; Weiss, Ray F; Saito, Takuya; Yokouchi, Yoko; Krummel, Paul B; Steele, L. Paul; Fraser, Paul J; Li, Shanlan; Park, Sunyoung; Reimann, Stefan; Vollmer, Martin K; Lunder, Chris; Hermansen, Ove; Schmidbauer, Norbert; MAIONE, MICHELA; ARDUINI, JGOR; Young, Dickon; Simmonds, Peter G.;pmid: 25918401
pmc: PMC4434701
Significance Hydrofluorocarbons (HFCs) are among the atmosphere’s fastest growing, and most potent, greenhouse gases. Proposals have been made to phase down their use over the coming decades. Such initiatives may largely be informed by existing emissions inventories, which, we show, are the subject of significant uncertainty. In this work, we use atmospheric models and measurements to examine the accuracy of these inventories for five major HFCs. We show that, when aggregated together, reported emissions of these HFCs from developed countries are consistent with the atmospheric measurements, and almost half of global emissions now originate from nonreporting countries. However, the agreement between our results and the inventory breaks down for individual HFC emissions, suggesting inaccuracies in the reporting methods for individual compounds.
Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/5121g5q5Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data PortalDSpace@MIT (Massachusetts Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1420247112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/5121g5q5Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data PortalDSpace@MIT (Massachusetts Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1420247112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 United Kingdom, ItalyPublisher:American Geophysical Union (AGU) Norbert Schmidbauer; Ronald G. Prinn; Chris Rene Lunder; Jian Yu Huang; Konrad Stemmler; Konrad Stemmler; Derek M. Cunnold; Frode Stordal; R. G. Derwent; Peter Simmonds; Doris Folini; Ray F. Weiss; R. H. J. Wang; L. W. Porter; Graham Nickless; Archie McCulloch; Alistair J. Manning; Jgor Arduini; B. L. Dunse; Paul J. Fraser; B. R. Greally; Simon O'Doherty; Ove Hermansen; Michela Maione; Stefan Reimann; Peter K. Salameh; Paul B. Krummel; Martin K. Vollmer;Ground‐based in situ measurements of 1,1‐difluoroethane (HFC‐152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC‐152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC‐152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC‐152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC‐152a from 1994 to 2004 are derived using the global mean HFC‐152a observations and a 12‐box 2‐D model. The global emission of HFC‐152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above‐baseline elevations in the HFC‐152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5–15% of global emissions for 1,1‐difluoroethane, while the Australian contribution is negligible at 5–10 tonnes/year, <0.05% of global emissions.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 242 citations 242 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United Kingdom, ItalyPublisher:American Geophysical Union (AGU) Norbert Schmidbauer; Ronald G. Prinn; Chris Rene Lunder; Jian Yu Huang; Konrad Stemmler; Konrad Stemmler; Derek M. Cunnold; Frode Stordal; R. G. Derwent; Peter Simmonds; Doris Folini; Ray F. Weiss; R. H. J. Wang; L. W. Porter; Graham Nickless; Archie McCulloch; Alistair J. Manning; Jgor Arduini; B. L. Dunse; Paul J. Fraser; B. R. Greally; Simon O'Doherty; Ove Hermansen; Michela Maione; Stefan Reimann; Peter K. Salameh; Paul B. Krummel; Martin K. Vollmer;Ground‐based in situ measurements of 1,1‐difluoroethane (HFC‐152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC‐152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC‐152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC‐152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC‐152a from 1994 to 2004 are derived using the global mean HFC‐152a observations and a 12‐box 2‐D model. The global emission of HFC‐152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above‐baseline elevations in the HFC‐152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5–15% of global emissions for 1,1‐difluoroethane, while the Australian contribution is negligible at 5–10 tonnes/year, <0.05% of global emissions.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 242 citations 242 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | PARISEC| PARISAnnadate, Saurabh; Mancinelli, Enrico; Gonella, Barbara; Moricci, Federica; O'Doherty, Simon; Stanley, Kieran; Young, Dickon; Vollmer, Martin K.; Cesari, Rita; Falasca, Serena; Giostra, Umberto; Maione, Michela; Arduini, Jgor;handle: 11576/2754071
Abstract HFC-134a is the most prevalent hydrofluorocarbon used as a replacement for ozone-depleting CFCs and HCFCs. Due to its high global warming potential, it is regulated under various European and global frameworks, underscoring the importance of tracking its emissions. Emissions derived by the commonly used, bottom-up, methodology are affected by a certain degree of uncertainty. The bottom-up estimates can be aided with an independent top-down estimate based on atmospheric observations combined with an atmospheric transport model. This study presents HFC-134a emissions for Europe, with a specific focus on Italy, from 2008 to 2023. The emissions were estimated using a Bayesian inversion methodology, based on atmospheric observations collected at four European stations. Our analysis reveals a slightly increasing trend in HFC-134a emissions for Italy from 2008 to 2015 of 0.17 $${\mathrm{Gg\,yr}^{-1}}$$ Gg yr - 1 , followed by a steady decrease thereafter, highlighting the effect of European regulation on fluorinated gases that came into force in 2014. We observed a reduction in HFC-134a emissions in the Po Basin inferred from the inversion method for 2020, likely due to mobility restrictions imposed during the COVID-19 pandemic. The observed mild seasonality in emissions may be partly attributed to higher air-conditioning activity during summer. Comparison with the Italian National Emission Inventory indicates an improvement in iterative bottom-up estimates, with the 2024 inventory emission trend post-2015 aligning closely with our inversion results. This study emphasises the need for collaboration between the two independent approaches to enhance the accuracy of emission estimates. Such cooperation is crucial to narrowing the gap in quantifying emissions of potent greenhouse gases and effectively assessing the progress of international policies and regulations.
Archivio istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12302-025-01081-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12302-025-01081-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | PARISEC| PARISAnnadate, Saurabh; Mancinelli, Enrico; Gonella, Barbara; Moricci, Federica; O'Doherty, Simon; Stanley, Kieran; Young, Dickon; Vollmer, Martin K.; Cesari, Rita; Falasca, Serena; Giostra, Umberto; Maione, Michela; Arduini, Jgor;handle: 11576/2754071
Abstract HFC-134a is the most prevalent hydrofluorocarbon used as a replacement for ozone-depleting CFCs and HCFCs. Due to its high global warming potential, it is regulated under various European and global frameworks, underscoring the importance of tracking its emissions. Emissions derived by the commonly used, bottom-up, methodology are affected by a certain degree of uncertainty. The bottom-up estimates can be aided with an independent top-down estimate based on atmospheric observations combined with an atmospheric transport model. This study presents HFC-134a emissions for Europe, with a specific focus on Italy, from 2008 to 2023. The emissions were estimated using a Bayesian inversion methodology, based on atmospheric observations collected at four European stations. Our analysis reveals a slightly increasing trend in HFC-134a emissions for Italy from 2008 to 2015 of 0.17 $${\mathrm{Gg\,yr}^{-1}}$$ Gg yr - 1 , followed by a steady decrease thereafter, highlighting the effect of European regulation on fluorinated gases that came into force in 2014. We observed a reduction in HFC-134a emissions in the Po Basin inferred from the inversion method for 2020, likely due to mobility restrictions imposed during the COVID-19 pandemic. The observed mild seasonality in emissions may be partly attributed to higher air-conditioning activity during summer. Comparison with the Italian National Emission Inventory indicates an improvement in iterative bottom-up estimates, with the 2024 inventory emission trend post-2015 aligning closely with our inversion results. This study emphasises the need for collaboration between the two independent approaches to enhance the accuracy of emission estimates. Such cooperation is crucial to narrowing the gap in quantifying emissions of potent greenhouse gases and effectively assessing the progress of international policies and regulations.
Archivio istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12302-025-01081-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12302-025-01081-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Norway, United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | INGOS, MIUREC| INGOS ,MIURPaolo Bonasoni; Jgor Arduini; Jgor Arduini; Michela Maione; Francesco Graziosi; L. J. M. Kuijpers; Simon O'Doherty; Andreas Stohl; F. Furlani; Umberto Giostra; Stephen A. Montzka; Stephen A. Montzka; Ben R. Miller; Ben R. Miller; Ben R. Miller;HCFC-22 (CHClF2), a stratospherie ozone depleting substance and a powerful greenhouse gas, is the third most abundant anthropogenic halocarbon in the atmosphere. Primarily used in refrigeration and air conditioning systems, its global production and consumption have increased during the last 60 years, with the global increases in the last decade mainly attributable to developing countries. In 2007, an adjustment to the Montreal Protocol for Substances that Deplete the Ozone Layer called for an accelerated phase out of HCFCs, implying a 75% reduction (base year 1989) of HCFC production and consumption by 2010 in developed countries against the previous 65% reduction. In Europe HCFC-22 is continuously monitored at the two sites Mace Head (Ireland) and Monte Cimone (Italy). Combining atmospheric observations with a Bayesian inversion technique, we estimated fluxes of HCFC-22 from Europe and from eight macro-areas within it, over an 11-year period from January 2002 to December 2012, during which the accelerated restrictions on HCFCs production and consumption have entered into force. According to our study, the maximum emissions over the entire domain was in 2003 (38.2 +/- 4.7 Gg yr(-1)), and the minimum in 2012 (12.1 +/- 2.0 Gg yr(-1)); emissions continuously decreased between these years, except for secondary maxima in the 2008 and 2010. Despite such a decrease in regional emissions, background values of HCFC-22 measured at the two European stations over 2002-2012 are still increasing as a consequence of global emissions, in part from developing countries, with an average trend of ca 7.0 ppt yr(-1). However, the observations at the two European stations show also that since 2008 a decrease in the global growth rate has occurred. In general, our European emission estimates are in good agreement with those reported by previous studies that used different techniques. Since the currently dominant emission source of HCFC-22 is from banks, we assess the banks' size and their contribution to the total European emissions up to 2030, and we project a fast decrease approaching negligible emissions in the last five years of the considered period. Finally, inversions conducted over three month periods showed evidence for a seasonal cycle in emissions in regions in the Mediterranean basin but not outside it. Emissions derived from regions in the Mediterranean basin were ca. 25% higher in warmer months than in colder months. (C) 2015 The Authors. Published by Elsevier Ltd.
Atmospheric Environm... arrow_drop_down Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.at...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.at...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Norway, United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | INGOS, MIUREC| INGOS ,MIURPaolo Bonasoni; Jgor Arduini; Jgor Arduini; Michela Maione; Francesco Graziosi; L. J. M. Kuijpers; Simon O'Doherty; Andreas Stohl; F. Furlani; Umberto Giostra; Stephen A. Montzka; Stephen A. Montzka; Ben R. Miller; Ben R. Miller; Ben R. Miller;HCFC-22 (CHClF2), a stratospherie ozone depleting substance and a powerful greenhouse gas, is the third most abundant anthropogenic halocarbon in the atmosphere. Primarily used in refrigeration and air conditioning systems, its global production and consumption have increased during the last 60 years, with the global increases in the last decade mainly attributable to developing countries. In 2007, an adjustment to the Montreal Protocol for Substances that Deplete the Ozone Layer called for an accelerated phase out of HCFCs, implying a 75% reduction (base year 1989) of HCFC production and consumption by 2010 in developed countries against the previous 65% reduction. In Europe HCFC-22 is continuously monitored at the two sites Mace Head (Ireland) and Monte Cimone (Italy). Combining atmospheric observations with a Bayesian inversion technique, we estimated fluxes of HCFC-22 from Europe and from eight macro-areas within it, over an 11-year period from January 2002 to December 2012, during which the accelerated restrictions on HCFCs production and consumption have entered into force. According to our study, the maximum emissions over the entire domain was in 2003 (38.2 +/- 4.7 Gg yr(-1)), and the minimum in 2012 (12.1 +/- 2.0 Gg yr(-1)); emissions continuously decreased between these years, except for secondary maxima in the 2008 and 2010. Despite such a decrease in regional emissions, background values of HCFC-22 measured at the two European stations over 2002-2012 are still increasing as a consequence of global emissions, in part from developing countries, with an average trend of ca 7.0 ppt yr(-1). However, the observations at the two European stations show also that since 2008 a decrease in the global growth rate has occurred. In general, our European emission estimates are in good agreement with those reported by previous studies that used different techniques. Since the currently dominant emission source of HCFC-22 is from banks, we assess the banks' size and their contribution to the total European emissions up to 2030, and we project a fast decrease approaching negligible emissions in the last five years of the considered period. Finally, inversions conducted over three month periods showed evidence for a seasonal cycle in emissions in regions in the Mediterranean basin but not outside it. Emissions derived from regions in the Mediterranean basin were ca. 25% higher in warmer months than in colder months. (C) 2015 The Authors. Published by Elsevier Ltd.
Atmospheric Environm... arrow_drop_down Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.at...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.at...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, United States, United Kingdom, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | INGOSEC| INGOSLunt, Mark F; Rigby, Matthew; Ganesan, Anita L; Manning, Alistair J; Prinn, Ronald G; O'Doherty, Simon; Mühle, Jens; Harth, Christina M; Salameh, Peter K; Arnold, Tim; Weiss, Ray F; Saito, Takuya; Yokouchi, Yoko; Krummel, Paul B; Steele, L. Paul; Fraser, Paul J; Li, Shanlan; Park, Sunyoung; Reimann, Stefan; Vollmer, Martin K; Lunder, Chris; Hermansen, Ove; Schmidbauer, Norbert; MAIONE, MICHELA; ARDUINI, JGOR; Young, Dickon; Simmonds, Peter G.;pmid: 25918401
pmc: PMC4434701
Significance Hydrofluorocarbons (HFCs) are among the atmosphere’s fastest growing, and most potent, greenhouse gases. Proposals have been made to phase down their use over the coming decades. Such initiatives may largely be informed by existing emissions inventories, which, we show, are the subject of significant uncertainty. In this work, we use atmospheric models and measurements to examine the accuracy of these inventories for five major HFCs. We show that, when aggregated together, reported emissions of these HFCs from developed countries are consistent with the atmospheric measurements, and almost half of global emissions now originate from nonreporting countries. However, the agreement between our results and the inventory breaks down for individual HFC emissions, suggesting inaccuracies in the reporting methods for individual compounds.
Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/5121g5q5Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data PortalDSpace@MIT (Massachusetts Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1420247112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/5121g5q5Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data PortalDSpace@MIT (Massachusetts Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1420247112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, United States, United Kingdom, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | INGOSEC| INGOSLunt, Mark F; Rigby, Matthew; Ganesan, Anita L; Manning, Alistair J; Prinn, Ronald G; O'Doherty, Simon; Mühle, Jens; Harth, Christina M; Salameh, Peter K; Arnold, Tim; Weiss, Ray F; Saito, Takuya; Yokouchi, Yoko; Krummel, Paul B; Steele, L. Paul; Fraser, Paul J; Li, Shanlan; Park, Sunyoung; Reimann, Stefan; Vollmer, Martin K; Lunder, Chris; Hermansen, Ove; Schmidbauer, Norbert; MAIONE, MICHELA; ARDUINI, JGOR; Young, Dickon; Simmonds, Peter G.;pmid: 25918401
pmc: PMC4434701
Significance Hydrofluorocarbons (HFCs) are among the atmosphere’s fastest growing, and most potent, greenhouse gases. Proposals have been made to phase down their use over the coming decades. Such initiatives may largely be informed by existing emissions inventories, which, we show, are the subject of significant uncertainty. In this work, we use atmospheric models and measurements to examine the accuracy of these inventories for five major HFCs. We show that, when aggregated together, reported emissions of these HFCs from developed countries are consistent with the atmospheric measurements, and almost half of global emissions now originate from nonreporting countries. However, the agreement between our results and the inventory breaks down for individual HFC emissions, suggesting inaccuracies in the reporting methods for individual compounds.
Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/5121g5q5Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data PortalDSpace@MIT (Massachusetts Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1420247112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/5121g5q5Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data PortalDSpace@MIT (Massachusetts Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1420247112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu