- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | UK Collaboratorium for Re...UKRI| UK Collaboratorium for Research in Infrastructure & Cities: Urban Observatories (Strand B)Authors: Huseyin Burak Akyol; Chris Preist; Daniel Schien;Forecasting domestic electricity consumption is important for a wide range of modern power system solutions and smart applications that support network operation, grid stability, and demand-side management, most of which depend on robust and accurate predictions. The methods producing these predictions infer future load from statistical regularity in historical data. If such regularity is lacking, predictions then regress towards the most recently observed consumption value used in the input set. Predictions then follow the actual load data one step behind in time, potentially affecting the robustness of predictions and functionality of applications. Current evaluation methods do not detect this behaviour which may result in overconfidence in prediction results. In this study, we 1) define and systematically analyse this behaviour, which we label the Persistence Forecast Effect and illustrate its impacts, 2) propose a novel method, called 1-Step-Shifting, to detect its presence, and 3) analyse and establish the relationship between irregularity in data and the effect. Further, we provide a case study applying state-of-the-art forecasting techniques to a real-world dataset of electricity consumption data from 69 households in order to demonstrate the Persistence Forecast Effect, its implications, and its relationship to statistical regularity in historical data.
Explore Bristol Rese... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3198326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Explore Bristol Rese... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3198326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | ESRC Centre for Sociodigi..., UKRI | CANDISE: Change-Oriented ...UKRI| ESRC Centre for Sociodigital Futures ,UKRI| CANDISE: Change-Oriented Assessments for Net-Zero Digital ServicesChristian Herglotz; Angeliki Katsenou; Xinyi Wang; Matthias Kränzler; Daniel Schien;Given the growing environmental concerns and significant resource consumption associated with video streaming on electronic devices, measuring the energy consumption is important to guide optimisation and to assess its relative environmental impact. In this paper, we provide comprehensive guidance to accurately measure the energy and power consumption in video communication technologies. We address the complexities inherent in measuring energy consumption across diverse software and hardware setups, with a focus on video communication tasks. We review current measurement techniques, identify limitations in existing practices, and propose a structured methodology that incorporates considerations for static and dynamic power consumption, appropriate sampling frequencies, and statistical rigor. Additionally, we introduce a reference workflow that is adaptable to various multimedia applications and demonstrate its applicability through a case study. By offering clear guidance and practical tools, this work aims to improve the reliability, reproducibility, and comparability of energy consumption measurements in video technologies, providing a strong foundation for the multimedia community to base decisions on.
IEEE Access arrow_drop_down University of Bristol: Bristol ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3545814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Access arrow_drop_down University of Bristol: Bristol ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3545814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | UK Collaboratorium for Re...UKRI| UK Collaboratorium for Research in Infrastructure & Cities: Urban Observatories (Strand B)Authors: Huseyin Burak Akyol; Chris Preist; Daniel Schien;Forecasting domestic electricity consumption is important for a wide range of modern power system solutions and smart applications that support network operation, grid stability, and demand-side management, most of which depend on robust and accurate predictions. The methods producing these predictions infer future load from statistical regularity in historical data. If such regularity is lacking, predictions then regress towards the most recently observed consumption value used in the input set. Predictions then follow the actual load data one step behind in time, potentially affecting the robustness of predictions and functionality of applications. Current evaluation methods do not detect this behaviour which may result in overconfidence in prediction results. In this study, we 1) define and systematically analyse this behaviour, which we label the Persistence Forecast Effect and illustrate its impacts, 2) propose a novel method, called 1-Step-Shifting, to detect its presence, and 3) analyse and establish the relationship between irregularity in data and the effect. Further, we provide a case study applying state-of-the-art forecasting techniques to a real-world dataset of electricity consumption data from 69 households in order to demonstrate the Persistence Forecast Effect, its implications, and its relationship to statistical regularity in historical data.
Explore Bristol Rese... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3198326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Explore Bristol Rese... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3198326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | ESRC Centre for Sociodigi..., UKRI | CANDISE: Change-Oriented ...UKRI| ESRC Centre for Sociodigital Futures ,UKRI| CANDISE: Change-Oriented Assessments for Net-Zero Digital ServicesChristian Herglotz; Angeliki Katsenou; Xinyi Wang; Matthias Kränzler; Daniel Schien;Given the growing environmental concerns and significant resource consumption associated with video streaming on electronic devices, measuring the energy consumption is important to guide optimisation and to assess its relative environmental impact. In this paper, we provide comprehensive guidance to accurately measure the energy and power consumption in video communication technologies. We address the complexities inherent in measuring energy consumption across diverse software and hardware setups, with a focus on video communication tasks. We review current measurement techniques, identify limitations in existing practices, and propose a structured methodology that incorporates considerations for static and dynamic power consumption, appropriate sampling frequencies, and statistical rigor. Additionally, we introduce a reference workflow that is adaptable to various multimedia applications and demonstrate its applicability through a case study. By offering clear guidance and practical tools, this work aims to improve the reliability, reproducibility, and comparability of energy consumption measurements in video technologies, providing a strong foundation for the multimedia community to base decisions on.
IEEE Access arrow_drop_down University of Bristol: Bristol ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3545814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Access arrow_drop_down University of Bristol: Bristol ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3545814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu