Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Explore Bristol Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Avoiding Overconfidence in Predictions of Residential Energy Demand Through Identification of the Persistence Forecast Effect

Authors: Huseyin Burak Akyol; Chris Preist; Daniel Schien;

Avoiding Overconfidence in Predictions of Residential Energy Demand Through Identification of the Persistence Forecast Effect

Abstract

Forecasting domestic electricity consumption is important for a wide range of modern power system solutions and smart applications that support network operation, grid stability, and demand-side management, most of which depend on robust and accurate predictions. The methods producing these predictions infer future load from statistical regularity in historical data. If such regularity is lacking, predictions then regress towards the most recently observed consumption value used in the input set. Predictions then follow the actual load data one step behind in time, potentially affecting the robustness of predictions and functionality of applications. Current evaluation methods do not detect this behaviour which may result in overconfidence in prediction results. In this study, we 1) define and systematically analyse this behaviour, which we label the Persistence Forecast Effect and illustrate its impacts, 2) propose a novel method, called 1-Step-Shifting, to detect its presence, and 3) analyse and establish the relationship between irregularity in data and the effect. Further, we provide a case study applying state-of-the-art forecasting techniques to a real-world dataset of electricity consumption data from 69 households in order to demonstrate the Persistence Forecast Effect, its implications, and its relationship to statistical regularity in historical data.

Country
United Kingdom
Related Organizations
Keywords

/dk/atira/pure/core/keywords/faculty_of_enigneering/bristol_interaction_group, name=Bristol Interaction Group, 330, /dk/atira/pure/core/keywords/faculty_of_enigneering/bristol_interaction_group; name=Bristol Interaction Group

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green