- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2018 SpainPublisher:Frontiers Media SA Marta S. Lopes; C. Royo; Fanny Álvaro; Miguel Sánchez‐García; Emel Özer; Fatih Özdemir; Mehmet Karaman; M. Roustaii; M.R. Jalal-Kamali; Diego Noleto Luz Pequeno;doi: 10.3389/fpls.2018.00563 , 10.60692/5g503-wq954 , 10.5281/zenodo.14979358 , 10.5281/zenodo.14979357 , 10.60692/5v8ee-95860
pmid: 29765385
pmc: PMC5938555
handle: 20.500.12327/216
doi: 10.3389/fpls.2018.00563 , 10.60692/5g503-wq954 , 10.5281/zenodo.14979358 , 10.5281/zenodo.14979357 , 10.60692/5v8ee-95860
pmid: 29765385
pmc: PMC5938555
handle: 20.500.12327/216
Los patrones climáticos erráticos asociados con el aumento de las temperaturas y la disminución de las precipitaciones plantean desafíos únicos para los mejoradores de trigo que desempeñan un papel clave en la lucha por garantizar la seguridad alimentaria mundial. Dentro de las áreas de trigo de invierno alimentadas por lluvia de Turquía e Irán, los patrones climáticos inusuales pueden impedir alcanzar los aumentos potenciales máximos en las ganancias genéticas del trigo de invierno. Esto se relaciona principalmente con el hecho de que la clasificación de rendimiento de los genotipos probados puede cambiar de un año a otro. Los cambios en los patrones climáticos pueden interferir con las decisiones que toman los criadores sobre los ideotipos a los que deben aspirar durante la selección. Para informar las decisiones de mejoramiento, este estudio tuvo como objetivo optimizar los rasgos principales mediante el modelado de diferentes combinaciones de entornos (ubicaciones y años) y mediante la definición de un rango probabilístico de variaciones de rasgos (fenología y altura de la planta) que maximizaron los rendimientos de grano (se sugiere una línea de trigo con rumbo y altura óptimos para su uso como línea de prueba para ayudar a las decisiones de calibración de selección). La investigación reveló que la fenología óptima estaba altamente relacionada con la temperatura y las precipitaciones a las que los genotipos de trigo de invierno estaban expuestos alrededor del tiempo de partida (20 días antes y después de la partida). Específicamente, los genotipos de trigo de invierno posteriores se expusieron a temperaturas más altas tanto antes como después de la partida, aumentaron las precipitaciones en la etapa vegetativa y redujeron las precipitaciones durante el llenado de granos en comparación con los genotipos tempranos. Estas variaciones en la exposición a las condiciones climáticas dieron como resultado una duración de llenado de grano más corta y menores rendimientos de grano en genotipos de larga duración. Esta investigación probó si la diversidad dentro de las especies puede aumentar la resiliencia a los patrones climáticos erráticos. Para el estudio, la producción calculada de una selección de cinco genotipos de alto rendimiento (si se cultivan en cinco parcelas) se probó contra el monocultivo (si solo se cultiva un solo genotipo en la misma área) y reveló que un conjunto de genotipos diversos con diferente fenología y altura de planta no fue beneficioso. Se discuten nuevas estrategias de selección de la progenie: el estrecho rango de variación para la fenología en las familias puede facilitar el descubrimiento y la selección de nuevas líneas de trigo resistentes a la sequía y evitadoras dirigidas a ubicaciones específicas. Les conditions météorologiques erratiques associées à l'augmentation des températures et à la diminution des précipitations posent des défis uniques aux sélectionneurs de blé qui jouent un rôle clé dans la lutte pour assurer la sécurité alimentaire mondiale. Dans les zones de blé d'hiver pluvial de Turquie et d'Iran, des conditions météorologiques inhabituelles peuvent empêcher d'atteindre des augmentations potentielles maximales des gains génétiques du blé d'hiver. Ceci est principalement lié au fait que le classement de rendement des génotypes testés peut changer d'une année à l'autre. L'évolution des conditions météorologiques peut interférer avec les décisions prises par les éleveurs concernant le ou les idéotypes qu'ils devraient viser lors de la sélection. Pour éclairer les décisions de sélection, cette étude visait à optimiser les traits majeurs en modélisant différentes combinaisons d'environnements (lieux et années) et en définissant une gamme probabiliste de variations de traits (phénologie et hauteur de la plante) qui maximise les rendements en grains (une lignée de blé avec un cap et une hauteur optimaux est suggérée pour être utilisée comme ligne de test pour faciliter les décisions d'étalonnage de la sélection). La recherche a révélé que la phénologie optimale était fortement liée à la température et aux précipitations auxquelles les génotypes de blé d'hiver étaient exposés au moment du cap (20 jours avant et après le cap). Plus précisément, les génotypes de blé d'hiver ultérieurs ont été exposés à des températures plus élevées avant et après le cap, à des précipitations accrues au stade végétatif et à des précipitations réduites pendant le remplissage des grains par rapport aux génotypes précoces. Ces variations d'exposition aux conditions météorologiques ont entraîné une durée de remplissage des grains plus courte et des rendements en grains plus faibles dans les génotypes de longue durée. Cette recherche a testé si la diversité au sein des espèces peut augmenter la résilience aux conditions météorologiques erratiques. Pour l'étude, la production calculée d'une sélection de cinq génotypes à haut rendement (s'ils sont cultivés dans cinq parcelles) a été testée contre la monoculture (si seulement un seul génotype cultivé dans la même zone) et a révélé qu'un ensemble de génotypes divers avec une phénologie et une hauteur de plante différentes n'était pas bénéfique. De nouvelles stratégies de sélection de la descendance sont discutées : une plage étroite de variation de la phénologie dans les familles peut faciliter la découverte et la sélection de nouvelles lignées de blé résistantes à la sécheresse et évitantes ciblant des emplacements spécifiques. Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations (phenology and plant height) that maximized grain yields (one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower grain yields in long–duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenology and plant height was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought resistant and avoidant wheat lines targeting specific locations. تشكل أنماط الطقس غير المنتظمة المرتبطة بارتفاع درجات الحرارة وانخفاض هطول الأمطار تحديات فريدة لمربي القمح الذين يلعبون دورًا رئيسيًا في الكفاح لضمان الأمن الغذائي العالمي. داخل مناطق القمح الشتوي التي تغذيها الأمطار في تركيا وإيران، قد تمنع أنماط الطقس غير العادية تحقيق أقصى قدر من الزيادات المحتملة في المكاسب الجينية للقمح الشتوي. ويرتبط هذا في المقام الأول بحقيقة أن ترتيب غلة الأنماط الجينية التي تم اختبارها قد يتغير من سنة إلى أخرى. قد يتداخل تغيير أنماط الطقس مع القرارات التي يتخذها المربون حول الفكرة (الأفكار) التي يجب أن يهدفوا إليها أثناء الاختيار. لإبلاغ قرارات التكاثر، تهدف هذه الدراسة إلى تحسين السمات الرئيسية من خلال نمذجة مجموعات مختلفة من البيئات (المواقع والسنوات) ومن خلال تحديد مجموعة احتمالية من اختلافات السمات (الفينولوجيا وارتفاع النبات) التي تزيد من غلة الحبوب (يُقترح استخدام خط قمح واحد مع العنوان والارتفاع الأمثلين كخط اختبار للمساعدة في قرارات معايرة الاختيار). كشفت الأبحاث أن الفينولوجيا المثلى كانت مرتبطة ارتباطًا وثيقًا بدرجة الحرارة وهطول الأمطار التي تعرضت فيها الأنماط الجينية للقمح الشتوي حول وقت التوجه (20 يومًا قبل وبعد التوجه). على وجه التحديد، تعرضت الأنماط الجينية للقمح الشتوي في وقت لاحق لدرجات حرارة أعلى قبل وبعد التوجه، وزيادة هطول الأمطار في المرحلة النباتية، وانخفاض هطول الأمطار أثناء تعبئة الحبوب مقارنة بالأنماط الجينية المبكرة. أدت هذه الاختلافات في التعرض للظروف الجوية إلى تقصير مدة تعبئة الحبوب وانخفاض غلة الحبوب في الأنماط الجينية طويلة الأمد. اختبر هذا البحث ما إذا كان التنوع داخل الأنواع قد يزيد من المرونة في مواجهة أنماط الطقس غير المنتظمة. بالنسبة للدراسة، تم اختبار الإنتاج المحسوب لمجموعة مختارة من خمسة أنماط وراثية عالية الغلة (إذا نمت في خمس قطع أرض) ضد الزراعة الأحادية (إذا كان هناك نمط جيني واحد فقط نما في نفس المنطقة) وكشف أن مجموعة من الأنماط الجينية المتنوعة ذات الفينولوجيا المختلفة وارتفاع النبات لم تكن مفيدة. تتم مناقشة استراتيجيات جديدة لاختيار النسل: قد يسهل النطاق الضيق للاختلاف في علم الظواهر في العائلات اكتشاف واختيار خطوط قمح جديدة مقاومة للجفاف ومتجنبة تستهدف مواقع محددة.
Frontiers in Plant S... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Authors: Ixchel M. Hernandez-Ochoa; Senthold Asseng; Diego Notelo Luz Pequeno; Anabel Molero Milan; +9 AuthorsIxchel M. Hernandez-Ochoa; Senthold Asseng; Diego Notelo Luz Pequeno; Anabel Molero Milan; Gerrit Hoogenboom; Ricky Robertson; Kai Sonder; Matthew P. Reynolds; Ali Babar; Wei Xiong; Wei Xiong; Belay T. Kassie; Belay T. Kassie;handle: 10568/100191
Abstract Wheat is one of the most important cereal crops in Mexico, but the impact of future climate change on production is not known. To quantify the impact of future climate change together with its uncertainty, two wheat crop models were executed in parallel, using two scaling methods, five Global Climate Models (GCMs) and two main Representative Concentration Pathways (RCPs) for the 2050s. Simulated outputs varied among crop models, scaling methods, GCMs, and RCPs; however, they all projected a general decline in wheat yields by the 2050s. Despite the growth-stimulating effect of elevated CO2 concentrations, consistent yield declines were simulated across most of the main wheat growing regions of Mexico due to the projected increase in temperature. Exceptions occurred in some cooler areas, where temperature improved sub-optimal conditions, and in a few areas where rainfall increased, but these increases only provided negligible contributions to national production. Larger and more variable yield declines were projected for rainfed wheat due to current and projected spatial variability of temperature and rainfall patterns. Rainfed wheat, however, only contributes about 6% of Mexico’s wheat production. When aggregating the simulated climate change impacts, considering temperature increase, rainfall change, and elevated atmospheric CO2 concentrations for irrigated and rainfed wheat cropping systems, national wheat production for Mexico is projected to decline between 6.9% for RCP 4.5 and 7.9% for RCP 8.5. Model uncertainty (combined for crop and climate models) in simulated yield changes, and across two scaling methods, was smaller than temporal and spatial variability in both RCPs. Spatial variability tends to be the largest in both future scenarios. To maintain or increase future wheat production in Mexico, adaptation strategies, particularly to increasing temperatures affecting irrigated wheat, or expanding the cropping area, will be necessary.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/100191Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/100191Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, ItalyPublisher:Oxford University Press (OUP) Tommaso Stella; Heidi Webber; Ehsan Eyshi Rezaei; Senthold Asseng; Pierre Martre; Sibylle Dueri; Jose Rafael Guarin; Diego Noleto Luz Pequeno; Daniel F. Calderini; Matthew Reynolds; Gemma Molero; Daniel J. Miralles; Guillermo A. García; Gustavo A. Slafer; Francesco Giunta; Yean‐Uk Kim; Chenzhi Wang; Alex C. Ruane; Frank Ewert;handle: 11388/355190 , 11388/329729
Abstract Increasing genetic wheat yield potential is considered by many as critical to increasing global wheat yields and production, baring major changes in consumption patterns. Climate change challenges breeding by making target environments less predictable, altering regional productivity and potentially increasing yield variability. Here we used a crop simulation model solution in the SIMPLACE framework to explore yield sensitivity to select trait characteristics (radiation use efficiency [RUE], fruiting efficiency and light extinction coefficient) across 34 locations representing the world’s wheat-producing environments, determining their relationship to increasing yields, yield variability and cultivar performance. The magnitude of the yield increase was trait-dependent and differed between irrigated and rainfed environments. RUE had the most prominent marginal effect on yield, which increased by about 45 % and 33 % in irrigated and rainfed sites, respectively, between the minimum and maximum value of the trait. Altered values of light extinction coefficient had the least effect on yield levels. Higher yields from improved traits were generally associated with increased inter-annual yield variability (measured by standard deviation), but the relative yield variability (as coefficient of variation) remained largely unchanged between base and improved genotypes. This was true under both current and future climate scenarios. In this context, our study suggests higher wheat yields from these traits would not increase climate risk for farmers and the adoption of cultivars with these traits would not be associated with increased yield variability.
in silico Plants arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BYData sources: Fachrepositorium LebenswissenschaftenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/insilicoplants/diad013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert in silico Plants arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BYData sources: Fachrepositorium LebenswissenschaftenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/insilicoplants/diad013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Netherlands, Finland, France, Netherlands, Germany, Denmark, Italy, Germany, France, Germany, United Kingdom, SpainPublisher:Oxford University Press (OUP) Funded by:UKRI | Achieving Sustainable Agr..., DFG | Catchments as Reactors: M..., DFG +2 projectsUKRI| Achieving Sustainable Agricultural Systems (ASSIST) ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,DFG ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,EC| FACCE ERA NET PLUSDueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N L; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D; Basso, Bruno; Berger, Andres G; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C; Nendel, Claas; Olesen, Jørgen E; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W M; Rodríguez, Alfredo; Rötter, Reimund P; Ramos, Margarita Ruiz; Semenov, Mikhail A; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre; Pierre;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 119 Powered bymore_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2018 SpainPublisher:Frontiers Media SA Marta S. Lopes; C. Royo; Fanny Álvaro; Miguel Sánchez‐García; Emel Özer; Fatih Özdemir; Mehmet Karaman; M. Roustaii; M.R. Jalal-Kamali; Diego Noleto Luz Pequeno;doi: 10.3389/fpls.2018.00563 , 10.60692/5g503-wq954 , 10.5281/zenodo.14979358 , 10.5281/zenodo.14979357 , 10.60692/5v8ee-95860
pmid: 29765385
pmc: PMC5938555
handle: 20.500.12327/216
doi: 10.3389/fpls.2018.00563 , 10.60692/5g503-wq954 , 10.5281/zenodo.14979358 , 10.5281/zenodo.14979357 , 10.60692/5v8ee-95860
pmid: 29765385
pmc: PMC5938555
handle: 20.500.12327/216
Los patrones climáticos erráticos asociados con el aumento de las temperaturas y la disminución de las precipitaciones plantean desafíos únicos para los mejoradores de trigo que desempeñan un papel clave en la lucha por garantizar la seguridad alimentaria mundial. Dentro de las áreas de trigo de invierno alimentadas por lluvia de Turquía e Irán, los patrones climáticos inusuales pueden impedir alcanzar los aumentos potenciales máximos en las ganancias genéticas del trigo de invierno. Esto se relaciona principalmente con el hecho de que la clasificación de rendimiento de los genotipos probados puede cambiar de un año a otro. Los cambios en los patrones climáticos pueden interferir con las decisiones que toman los criadores sobre los ideotipos a los que deben aspirar durante la selección. Para informar las decisiones de mejoramiento, este estudio tuvo como objetivo optimizar los rasgos principales mediante el modelado de diferentes combinaciones de entornos (ubicaciones y años) y mediante la definición de un rango probabilístico de variaciones de rasgos (fenología y altura de la planta) que maximizaron los rendimientos de grano (se sugiere una línea de trigo con rumbo y altura óptimos para su uso como línea de prueba para ayudar a las decisiones de calibración de selección). La investigación reveló que la fenología óptima estaba altamente relacionada con la temperatura y las precipitaciones a las que los genotipos de trigo de invierno estaban expuestos alrededor del tiempo de partida (20 días antes y después de la partida). Específicamente, los genotipos de trigo de invierno posteriores se expusieron a temperaturas más altas tanto antes como después de la partida, aumentaron las precipitaciones en la etapa vegetativa y redujeron las precipitaciones durante el llenado de granos en comparación con los genotipos tempranos. Estas variaciones en la exposición a las condiciones climáticas dieron como resultado una duración de llenado de grano más corta y menores rendimientos de grano en genotipos de larga duración. Esta investigación probó si la diversidad dentro de las especies puede aumentar la resiliencia a los patrones climáticos erráticos. Para el estudio, la producción calculada de una selección de cinco genotipos de alto rendimiento (si se cultivan en cinco parcelas) se probó contra el monocultivo (si solo se cultiva un solo genotipo en la misma área) y reveló que un conjunto de genotipos diversos con diferente fenología y altura de planta no fue beneficioso. Se discuten nuevas estrategias de selección de la progenie: el estrecho rango de variación para la fenología en las familias puede facilitar el descubrimiento y la selección de nuevas líneas de trigo resistentes a la sequía y evitadoras dirigidas a ubicaciones específicas. Les conditions météorologiques erratiques associées à l'augmentation des températures et à la diminution des précipitations posent des défis uniques aux sélectionneurs de blé qui jouent un rôle clé dans la lutte pour assurer la sécurité alimentaire mondiale. Dans les zones de blé d'hiver pluvial de Turquie et d'Iran, des conditions météorologiques inhabituelles peuvent empêcher d'atteindre des augmentations potentielles maximales des gains génétiques du blé d'hiver. Ceci est principalement lié au fait que le classement de rendement des génotypes testés peut changer d'une année à l'autre. L'évolution des conditions météorologiques peut interférer avec les décisions prises par les éleveurs concernant le ou les idéotypes qu'ils devraient viser lors de la sélection. Pour éclairer les décisions de sélection, cette étude visait à optimiser les traits majeurs en modélisant différentes combinaisons d'environnements (lieux et années) et en définissant une gamme probabiliste de variations de traits (phénologie et hauteur de la plante) qui maximise les rendements en grains (une lignée de blé avec un cap et une hauteur optimaux est suggérée pour être utilisée comme ligne de test pour faciliter les décisions d'étalonnage de la sélection). La recherche a révélé que la phénologie optimale était fortement liée à la température et aux précipitations auxquelles les génotypes de blé d'hiver étaient exposés au moment du cap (20 jours avant et après le cap). Plus précisément, les génotypes de blé d'hiver ultérieurs ont été exposés à des températures plus élevées avant et après le cap, à des précipitations accrues au stade végétatif et à des précipitations réduites pendant le remplissage des grains par rapport aux génotypes précoces. Ces variations d'exposition aux conditions météorologiques ont entraîné une durée de remplissage des grains plus courte et des rendements en grains plus faibles dans les génotypes de longue durée. Cette recherche a testé si la diversité au sein des espèces peut augmenter la résilience aux conditions météorologiques erratiques. Pour l'étude, la production calculée d'une sélection de cinq génotypes à haut rendement (s'ils sont cultivés dans cinq parcelles) a été testée contre la monoculture (si seulement un seul génotype cultivé dans la même zone) et a révélé qu'un ensemble de génotypes divers avec une phénologie et une hauteur de plante différentes n'était pas bénéfique. De nouvelles stratégies de sélection de la descendance sont discutées : une plage étroite de variation de la phénologie dans les familles peut faciliter la découverte et la sélection de nouvelles lignées de blé résistantes à la sécheresse et évitantes ciblant des emplacements spécifiques. Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations (phenology and plant height) that maximized grain yields (one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower grain yields in long–duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenology and plant height was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought resistant and avoidant wheat lines targeting specific locations. تشكل أنماط الطقس غير المنتظمة المرتبطة بارتفاع درجات الحرارة وانخفاض هطول الأمطار تحديات فريدة لمربي القمح الذين يلعبون دورًا رئيسيًا في الكفاح لضمان الأمن الغذائي العالمي. داخل مناطق القمح الشتوي التي تغذيها الأمطار في تركيا وإيران، قد تمنع أنماط الطقس غير العادية تحقيق أقصى قدر من الزيادات المحتملة في المكاسب الجينية للقمح الشتوي. ويرتبط هذا في المقام الأول بحقيقة أن ترتيب غلة الأنماط الجينية التي تم اختبارها قد يتغير من سنة إلى أخرى. قد يتداخل تغيير أنماط الطقس مع القرارات التي يتخذها المربون حول الفكرة (الأفكار) التي يجب أن يهدفوا إليها أثناء الاختيار. لإبلاغ قرارات التكاثر، تهدف هذه الدراسة إلى تحسين السمات الرئيسية من خلال نمذجة مجموعات مختلفة من البيئات (المواقع والسنوات) ومن خلال تحديد مجموعة احتمالية من اختلافات السمات (الفينولوجيا وارتفاع النبات) التي تزيد من غلة الحبوب (يُقترح استخدام خط قمح واحد مع العنوان والارتفاع الأمثلين كخط اختبار للمساعدة في قرارات معايرة الاختيار). كشفت الأبحاث أن الفينولوجيا المثلى كانت مرتبطة ارتباطًا وثيقًا بدرجة الحرارة وهطول الأمطار التي تعرضت فيها الأنماط الجينية للقمح الشتوي حول وقت التوجه (20 يومًا قبل وبعد التوجه). على وجه التحديد، تعرضت الأنماط الجينية للقمح الشتوي في وقت لاحق لدرجات حرارة أعلى قبل وبعد التوجه، وزيادة هطول الأمطار في المرحلة النباتية، وانخفاض هطول الأمطار أثناء تعبئة الحبوب مقارنة بالأنماط الجينية المبكرة. أدت هذه الاختلافات في التعرض للظروف الجوية إلى تقصير مدة تعبئة الحبوب وانخفاض غلة الحبوب في الأنماط الجينية طويلة الأمد. اختبر هذا البحث ما إذا كان التنوع داخل الأنواع قد يزيد من المرونة في مواجهة أنماط الطقس غير المنتظمة. بالنسبة للدراسة، تم اختبار الإنتاج المحسوب لمجموعة مختارة من خمسة أنماط وراثية عالية الغلة (إذا نمت في خمس قطع أرض) ضد الزراعة الأحادية (إذا كان هناك نمط جيني واحد فقط نما في نفس المنطقة) وكشف أن مجموعة من الأنماط الجينية المتنوعة ذات الفينولوجيا المختلفة وارتفاع النبات لم تكن مفيدة. تتم مناقشة استراتيجيات جديدة لاختيار النسل: قد يسهل النطاق الضيق للاختلاف في علم الظواهر في العائلات اكتشاف واختيار خطوط قمح جديدة مقاومة للجفاف ومتجنبة تستهدف مواقع محددة.
Frontiers in Plant S... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Authors: Ixchel M. Hernandez-Ochoa; Senthold Asseng; Diego Notelo Luz Pequeno; Anabel Molero Milan; +9 AuthorsIxchel M. Hernandez-Ochoa; Senthold Asseng; Diego Notelo Luz Pequeno; Anabel Molero Milan; Gerrit Hoogenboom; Ricky Robertson; Kai Sonder; Matthew P. Reynolds; Ali Babar; Wei Xiong; Wei Xiong; Belay T. Kassie; Belay T. Kassie;handle: 10568/100191
Abstract Wheat is one of the most important cereal crops in Mexico, but the impact of future climate change on production is not known. To quantify the impact of future climate change together with its uncertainty, two wheat crop models were executed in parallel, using two scaling methods, five Global Climate Models (GCMs) and two main Representative Concentration Pathways (RCPs) for the 2050s. Simulated outputs varied among crop models, scaling methods, GCMs, and RCPs; however, they all projected a general decline in wheat yields by the 2050s. Despite the growth-stimulating effect of elevated CO2 concentrations, consistent yield declines were simulated across most of the main wheat growing regions of Mexico due to the projected increase in temperature. Exceptions occurred in some cooler areas, where temperature improved sub-optimal conditions, and in a few areas where rainfall increased, but these increases only provided negligible contributions to national production. Larger and more variable yield declines were projected for rainfed wheat due to current and projected spatial variability of temperature and rainfall patterns. Rainfed wheat, however, only contributes about 6% of Mexico’s wheat production. When aggregating the simulated climate change impacts, considering temperature increase, rainfall change, and elevated atmospheric CO2 concentrations for irrigated and rainfed wheat cropping systems, national wheat production for Mexico is projected to decline between 6.9% for RCP 4.5 and 7.9% for RCP 8.5. Model uncertainty (combined for crop and climate models) in simulated yield changes, and across two scaling methods, was smaller than temporal and spatial variability in both RCPs. Spatial variability tends to be the largest in both future scenarios. To maintain or increase future wheat production in Mexico, adaptation strategies, particularly to increasing temperatures affecting irrigated wheat, or expanding the cropping area, will be necessary.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/100191Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019Full-Text: https://hdl.handle.net/10568/100191Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, ItalyPublisher:Oxford University Press (OUP) Tommaso Stella; Heidi Webber; Ehsan Eyshi Rezaei; Senthold Asseng; Pierre Martre; Sibylle Dueri; Jose Rafael Guarin; Diego Noleto Luz Pequeno; Daniel F. Calderini; Matthew Reynolds; Gemma Molero; Daniel J. Miralles; Guillermo A. García; Gustavo A. Slafer; Francesco Giunta; Yean‐Uk Kim; Chenzhi Wang; Alex C. Ruane; Frank Ewert;handle: 11388/355190 , 11388/329729
Abstract Increasing genetic wheat yield potential is considered by many as critical to increasing global wheat yields and production, baring major changes in consumption patterns. Climate change challenges breeding by making target environments less predictable, altering regional productivity and potentially increasing yield variability. Here we used a crop simulation model solution in the SIMPLACE framework to explore yield sensitivity to select trait characteristics (radiation use efficiency [RUE], fruiting efficiency and light extinction coefficient) across 34 locations representing the world’s wheat-producing environments, determining their relationship to increasing yields, yield variability and cultivar performance. The magnitude of the yield increase was trait-dependent and differed between irrigated and rainfed environments. RUE had the most prominent marginal effect on yield, which increased by about 45 % and 33 % in irrigated and rainfed sites, respectively, between the minimum and maximum value of the trait. Altered values of light extinction coefficient had the least effect on yield levels. Higher yields from improved traits were generally associated with increased inter-annual yield variability (measured by standard deviation), but the relative yield variability (as coefficient of variation) remained largely unchanged between base and improved genotypes. This was true under both current and future climate scenarios. In this context, our study suggests higher wheat yields from these traits would not increase climate risk for farmers and the adoption of cultivars with these traits would not be associated with increased yield variability.
in silico Plants arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BYData sources: Fachrepositorium LebenswissenschaftenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/insilicoplants/diad013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert in silico Plants arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BYData sources: Fachrepositorium LebenswissenschaftenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/insilicoplants/diad013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Netherlands, Finland, France, Netherlands, Germany, Denmark, Italy, Germany, France, Germany, United Kingdom, SpainPublisher:Oxford University Press (OUP) Funded by:UKRI | Achieving Sustainable Agr..., DFG | Catchments as Reactors: M..., DFG +2 projectsUKRI| Achieving Sustainable Agricultural Systems (ASSIST) ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,DFG ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,EC| FACCE ERA NET PLUSDueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N L; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D; Basso, Bruno; Berger, Andres G; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C; Nendel, Claas; Olesen, Jørgen E; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W M; Rodríguez, Alfredo; Rötter, Reimund P; Ramos, Margarita Ruiz; Semenov, Mikhail A; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre; Pierre;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 119 Powered bymore_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu