- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United States, SwitzerlandPublisher:Copernicus GmbH Martin Gysel; Margit Schwikowski; Margit Schwikowski; Margit Schwikowski; Susan Kaspari; M. Laborde; J. A. Menking; Isabel A. Wendl; R. Färber;Abstract. In this study we attempt to optimize the method for measuring black carbon (BC) in snow and ice using a single particle soot photometer (SP2). Beside the previously applied ultrasonic (CETAC) and Collison-type nebulizers we introduce a jet (APEX-Q) nebulizer to aerosolize the aqueous sample for SP2 analysis. Both CETAC and APEX-Q require small sample volumes (few milliliters) which makes them suitable for ice core analysis. The APEX-Q shows the least size-dependent nebulizing efficiency in the BC particle diameter range of 100–1000 nm. The CETAC has the advantage that air and liquid flows can be monitored continuously. All nebulizer-types require a calibration with BC standards for the determination of the BC mass concentration in unknown aqueous samples. We found Aquadag to be a suitable material for preparing calibration standards. Further, we studied the influence of different treatments for fresh discrete snow and ice samples as well as the effect of storage. The results show that samples are best kept frozen until analysis. Once melted, they should be sonicated for 25 min, immediately analyzed while being stirred and not be refrozen.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)https://doi.org/10.5194/amtd-7...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)Atmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amtd-7-3075-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 69 citations 69 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)https://doi.org/10.5194/amtd-7...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)Atmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amtd-7-3075-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United States, SwitzerlandPublisher:Copernicus GmbH Martin Gysel; Margit Schwikowski; Margit Schwikowski; Margit Schwikowski; Susan Kaspari; M. Laborde; J. A. Menking; Isabel A. Wendl; R. Färber;Abstract. In this study we attempt to optimize the method for measuring black carbon (BC) in snow and ice using a single particle soot photometer (SP2). Beside the previously applied ultrasonic (CETAC) and Collison-type nebulizers we introduce a jet (APEX-Q) nebulizer to aerosolize the aqueous sample for SP2 analysis. Both CETAC and APEX-Q require small sample volumes (few milliliters) which makes them suitable for ice core analysis. The APEX-Q shows the least size-dependent nebulizing efficiency in the BC particle diameter range of 100–1000 nm. The CETAC has the advantage that air and liquid flows can be monitored continuously. All nebulizer-types require a calibration with BC standards for the determination of the BC mass concentration in unknown aqueous samples. We found Aquadag to be a suitable material for preparing calibration standards. Further, we studied the influence of different treatments for fresh discrete snow and ice samples as well as the effect of storage. The results show that samples are best kept frozen until analysis. Once melted, they should be sonicated for 25 min, immediately analyzed while being stirred and not be refrozen.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)https://doi.org/10.5194/amtd-7...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)Atmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amtd-7-3075-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 69 citations 69 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)https://doi.org/10.5194/amtd-7...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)Atmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amtd-7-3075-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu