- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021Publisher:MDPI AG Authors: Trond Thorgeir Harsem; Behrouz Nourozi; Amirmohammad Behzadi; Sasan Sadrizadeh;doi: 10.3390/en14248475
The present work introduces an innovative yet feasible heating system consisting of a ground source heat pump, borehole thermal energy storage, an auxiliary heater, radiators, and ventilation coils. The concept is developed by designing a new piping configuration monitored by a smart control system to reduce the return flow temperature and increase the temperature differential between the supply and return flows. The radiators and ventilation heating circuits are connected in series to provide the heat loads with the same demand. The investigation of the proposed model is performed through developed Python code considering a case study hospital located in Norway. The article presents, after validation of the primary heating system installed in the hospital, a parametric investigation to evaluate the effect of main operational parameters on the performance metrics of both the heat pump and the total system. According to the results, the evaporator temperature is a significant parameter that considerably impacts the system performance. The parametric study findings show that the heat pumps with a thermal capacity of 400 kW and 600 kW lead to the highest heat pump and total seasonal performance factors, respectively. It is also observed that increasing the heat pump capacity does not affect the performance indicators when the condensation temperature is 40 °C and the heat recovery is 50%. Moreover, choosing a heat pump with a smaller capacity at the heat recovery of 75% (or higher) would be an appropriate option because the seasonal performance values are not varied by changing the heat pump capacity. The results reveal that reducing return temperature under a proper parameters selection results in substantially higher seasonal performance factors of the heat pump and total system. These outcomes are in-line with the United Nations sustainable development goals including Sustainable Cities and Communities.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8475/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8475/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Behrouz Nourozi; Qian Wang; Adnan Ploskić;Abstract An efficient use of waste heat recovery and geothermal heat can play an important role in lowering the overall energy use of buildings. This study evaluated the potential of geothermal energy and heat recovery from residential wastewater to reduce the energy need of building-ventilation in cold climates. The performance of the mechanical ventilation with heat recovery (MVHR) system in a multi-family building located in central Sweden was studied. The focus of the investigation was on reduction of frosting in the air handling unit during the coldest months. Three configurations of one air preheating system fed by two renewable heat sources, wastewater and geothermal energy, were studied. It was found that compared to building without an air preheating system, the suggested air preheating systems reduced the defrosting time to 25%. By controlling and maintaining the preheated air temperature to slightly above the defrosting start, air heat recovery efficiency of MVHR above 80% was achieved for 90% of the studied time during heating season when frosting occurs. The energy need for the circulation pumps in the suggested air preheating systems was 5% of the recovered thermal energy from wastewater. The simulation results suggested that the air preheating system using wastewater heat recovery with a temperature-stratified storage tank was the most efficient one among the studied systems.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2019 SwedenPublisher:KTH, Hållbara byggnader Authors: Nourozi, Behrouz; Härer, Simon; Wang, Qian; Ploskic, Adnan;Frosting is a common problem in air handling units in buildings in cold climates. Tacklingthis problem is so far achieved by using considerable amount of energy while during thisprocess, the indoor air quality is compromised. This article presents the Life Cycle Cost(LCC) assessment of a preventive solution for frosting using two renewable heat sources. QC 20190802
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.32067.86563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.32067.86563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Elsevier BV Henrikki Pieskä; Cong Wang; Cong Wang; Qian Wang; Behrouz Nourozi; Adnan Ploskić;Abstract In recent years, the increasing occurrence of heatwaves raises the cooling need of residential buildings in Scandinavian countries, which are traditionally not equipped with active cooling systems. Indoor overheating caused by such heatwaves leads to severe consequences for occupants, especially kids and seniors. Efficient and economical cooling solutions are urgently needed to cope with frequent heatwaves. The present study investigated the novel usage of the geothermal-assisted mechanical ventilation with heat recovery (GEO-MVHR) system for cooling purposes in typical Swedish multi-family dwellings. The cooling potential of the system and its contributions to thermal comfort were evaluated. Dynamic simulations were conducted to assess the system's cooling performance under two climate scenarios: the climate of 2018 representing an extreme year with excessively hot summer and the climate of a typical meteorological year. The GEO-MVHR system shows great potential in mitigating indoor overheating with improved thermal comfort. A ventilation airflow rate of 0.50–0.70 l/s/m2 is suggested for multi-family dwellings to maximize the cooling potential of the GEO-MVHR system. The indoor operative temperature could be reduced by up to 3 °C with the GEO-MVHR system operating for cooling. Modulating the supply air temperature of the GEO-MVHR system based on indoor thermal conditions is recommended, as it shows the advantage of avoiding unnecessary overcooling and energy saving.
Building and Environ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2021.108114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Building and Environ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2021.108114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2020Publisher:IBPSA Authors: Nourozi, Behrouz; Wang, Qian; Ploskic, Adnan;This study investigated the thermal potential of two renewable heat sources, residential wastewater and geothermal energy, for preheating the incoming air to the air-handling unit (AHU) in a multi-family building. The main purpose of preheating the inlet air was to avoid the frost formation inside AHU due to low outdoor temperatures during winter. Wastewater extraction flowrate and temperature, as two design parameters, were studied in detail by employing two types of wastewater storage tanks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26868/25222708.2019.210980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26868/25222708.2019.210980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | GeoFitEC| GeoFitPieskä, Henrikki; Wang, Cong; Nourozi, Behrouz; Ploskić, Adnan; Wang, Qian;The European Commission aims to reduce the greenhouse gas emissions of the European Union's building stock by 60% by 2030 compared with 1990. Meanwhile, the global demand for cooling is projected to grow 3% yearly between 2020 and 2050. High-temperature cooling systems provide cooling with lower exergy use than conventional cooling systems and enable the integration of renewable energy sources, and can play a crucial role in meeting the growing cooling demand with less energy use. The aim of this study is to analyse and critically evaluate two high-temperature cooling systems in terms of their energy and exergy use in a case study. We also consider thermal comfort performance, CO2 emissions, and sensitivity to changing operating conditions. The two systems considered are a mechanical ventilation system with heat recovery combined with geothermal cooling (GeoMVHR) and a radiant cooling system with ceiling panels connected to the same geothermal cooling (GeoRadiant) system. The study is conducted using building energy models of a typical office building belonging to a three-building school complex located in Sant Cugat near Barcelona, Spain. IDA ICE 4.8 simulation software was used for the simulations. The results show that the two different installations can produce near-identical thermal comfort conditions for the occupants. The GeoRadiant system achieves this result with 72% lower electricity use and 60% less exergy destruction than the GeoMVHR system. Due to the higher electricity use, the CO2 emissions caused by the GeoMVHR system are 3.5 times the emissions caused by the GeoRadiant system. Datasets: "Building energy simulation data results" and "Acquired data from existing and/or new installed meters or from existing BEMS (pre intervention EcoSCADA monitoring data)" - Raw data is available upon request. Follow the link and fill the request form.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Lars Herre; Behrouz Nourozi; Mohammad Reza Hesamzadeh; Qian Wang; Lennart Söder;Power systems are experiencing a decrease of synchronous generation along with increased penetration of inverter based renewable generation leading to reduced system inertia and a need for flexible resources. Non-generating resources such as thermostatically controlled loads (TCLs) are flexible due to their thermal energy storage capacity. When aggregated, TCLs can arbitrage energy prices and provide reserves to the power system. We approach the operational flexibility of the TCLs by modeling a risk-averse aggregator that controls decentralized TCLs and aims to maximize its own profit. The high number and low power rating of residential TCLs makes it difficult to model and assess their flexibility potential on national level. Thus, we make use of a high-level thermal energy storage model for aggregations of TCLs to quantify their flexibility potential. We present a method to aggregate temperature, TCL parameters, and building stock data into a thermal battery equivalent. We propose a multi-period multi-market multi-zonal two-stage chance constrained rolling horizon optimization problem formulation for the risk-averse day-ahead self-scheduling problem of a price-taker TCL aggregator bidding in energy and reserve markets under uncertainty and recast the problem as a linear program. We perform several case studies in the Swedish power system based on a survey of single- and two-family dwellings with electric heating and assess the flexibility potential. Additionally, a sensitivity analysis provides insights regarding market design and policy implications.
Journal of Energy St... arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.107062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.107062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021Publisher:MDPI AG Authors: Trond Thorgeir Harsem; Behrouz Nourozi; Amirmohammad Behzadi; Sasan Sadrizadeh;doi: 10.3390/en14248475
The present work introduces an innovative yet feasible heating system consisting of a ground source heat pump, borehole thermal energy storage, an auxiliary heater, radiators, and ventilation coils. The concept is developed by designing a new piping configuration monitored by a smart control system to reduce the return flow temperature and increase the temperature differential between the supply and return flows. The radiators and ventilation heating circuits are connected in series to provide the heat loads with the same demand. The investigation of the proposed model is performed through developed Python code considering a case study hospital located in Norway. The article presents, after validation of the primary heating system installed in the hospital, a parametric investigation to evaluate the effect of main operational parameters on the performance metrics of both the heat pump and the total system. According to the results, the evaporator temperature is a significant parameter that considerably impacts the system performance. The parametric study findings show that the heat pumps with a thermal capacity of 400 kW and 600 kW lead to the highest heat pump and total seasonal performance factors, respectively. It is also observed that increasing the heat pump capacity does not affect the performance indicators when the condensation temperature is 40 °C and the heat recovery is 50%. Moreover, choosing a heat pump with a smaller capacity at the heat recovery of 75% (or higher) would be an appropriate option because the seasonal performance values are not varied by changing the heat pump capacity. The results reveal that reducing return temperature under a proper parameters selection results in substantially higher seasonal performance factors of the heat pump and total system. These outcomes are in-line with the United Nations sustainable development goals including Sustainable Cities and Communities.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8475/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8475/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Behrouz Nourozi; Qian Wang; Adnan Ploskić;Abstract An efficient use of waste heat recovery and geothermal heat can play an important role in lowering the overall energy use of buildings. This study evaluated the potential of geothermal energy and heat recovery from residential wastewater to reduce the energy need of building-ventilation in cold climates. The performance of the mechanical ventilation with heat recovery (MVHR) system in a multi-family building located in central Sweden was studied. The focus of the investigation was on reduction of frosting in the air handling unit during the coldest months. Three configurations of one air preheating system fed by two renewable heat sources, wastewater and geothermal energy, were studied. It was found that compared to building without an air preheating system, the suggested air preheating systems reduced the defrosting time to 25%. By controlling and maintaining the preheated air temperature to slightly above the defrosting start, air heat recovery efficiency of MVHR above 80% was achieved for 90% of the studied time during heating season when frosting occurs. The energy need for the circulation pumps in the suggested air preheating systems was 5% of the recovered thermal energy from wastewater. The simulation results suggested that the air preheating system using wastewater heat recovery with a temperature-stratified storage tank was the most efficient one among the studied systems.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2019 SwedenPublisher:KTH, Hållbara byggnader Authors: Nourozi, Behrouz; Härer, Simon; Wang, Qian; Ploskic, Adnan;Frosting is a common problem in air handling units in buildings in cold climates. Tacklingthis problem is so far achieved by using considerable amount of energy while during thisprocess, the indoor air quality is compromised. This article presents the Life Cycle Cost(LCC) assessment of a preventive solution for frosting using two renewable heat sources. QC 20190802
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.32067.86563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.32067.86563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Elsevier BV Henrikki Pieskä; Cong Wang; Cong Wang; Qian Wang; Behrouz Nourozi; Adnan Ploskić;Abstract In recent years, the increasing occurrence of heatwaves raises the cooling need of residential buildings in Scandinavian countries, which are traditionally not equipped with active cooling systems. Indoor overheating caused by such heatwaves leads to severe consequences for occupants, especially kids and seniors. Efficient and economical cooling solutions are urgently needed to cope with frequent heatwaves. The present study investigated the novel usage of the geothermal-assisted mechanical ventilation with heat recovery (GEO-MVHR) system for cooling purposes in typical Swedish multi-family dwellings. The cooling potential of the system and its contributions to thermal comfort were evaluated. Dynamic simulations were conducted to assess the system's cooling performance under two climate scenarios: the climate of 2018 representing an extreme year with excessively hot summer and the climate of a typical meteorological year. The GEO-MVHR system shows great potential in mitigating indoor overheating with improved thermal comfort. A ventilation airflow rate of 0.50–0.70 l/s/m2 is suggested for multi-family dwellings to maximize the cooling potential of the GEO-MVHR system. The indoor operative temperature could be reduced by up to 3 °C with the GEO-MVHR system operating for cooling. Modulating the supply air temperature of the GEO-MVHR system based on indoor thermal conditions is recommended, as it shows the advantage of avoiding unnecessary overcooling and energy saving.
Building and Environ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2021.108114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Building and Environ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2021.108114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2020Publisher:IBPSA Authors: Nourozi, Behrouz; Wang, Qian; Ploskic, Adnan;This study investigated the thermal potential of two renewable heat sources, residential wastewater and geothermal energy, for preheating the incoming air to the air-handling unit (AHU) in a multi-family building. The main purpose of preheating the inlet air was to avoid the frost formation inside AHU due to low outdoor temperatures during winter. Wastewater extraction flowrate and temperature, as two design parameters, were studied in detail by employing two types of wastewater storage tanks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26868/25222708.2019.210980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26868/25222708.2019.210980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | GeoFitEC| GeoFitPieskä, Henrikki; Wang, Cong; Nourozi, Behrouz; Ploskić, Adnan; Wang, Qian;The European Commission aims to reduce the greenhouse gas emissions of the European Union's building stock by 60% by 2030 compared with 1990. Meanwhile, the global demand for cooling is projected to grow 3% yearly between 2020 and 2050. High-temperature cooling systems provide cooling with lower exergy use than conventional cooling systems and enable the integration of renewable energy sources, and can play a crucial role in meeting the growing cooling demand with less energy use. The aim of this study is to analyse and critically evaluate two high-temperature cooling systems in terms of their energy and exergy use in a case study. We also consider thermal comfort performance, CO2 emissions, and sensitivity to changing operating conditions. The two systems considered are a mechanical ventilation system with heat recovery combined with geothermal cooling (GeoMVHR) and a radiant cooling system with ceiling panels connected to the same geothermal cooling (GeoRadiant) system. The study is conducted using building energy models of a typical office building belonging to a three-building school complex located in Sant Cugat near Barcelona, Spain. IDA ICE 4.8 simulation software was used for the simulations. The results show that the two different installations can produce near-identical thermal comfort conditions for the occupants. The GeoRadiant system achieves this result with 72% lower electricity use and 60% less exergy destruction than the GeoMVHR system. Due to the higher electricity use, the CO2 emissions caused by the GeoMVHR system are 3.5 times the emissions caused by the GeoRadiant system. Datasets: "Building energy simulation data results" and "Acquired data from existing and/or new installed meters or from existing BEMS (pre intervention EcoSCADA monitoring data)" - Raw data is available upon request. Follow the link and fill the request form.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Lars Herre; Behrouz Nourozi; Mohammad Reza Hesamzadeh; Qian Wang; Lennart Söder;Power systems are experiencing a decrease of synchronous generation along with increased penetration of inverter based renewable generation leading to reduced system inertia and a need for flexible resources. Non-generating resources such as thermostatically controlled loads (TCLs) are flexible due to their thermal energy storage capacity. When aggregated, TCLs can arbitrage energy prices and provide reserves to the power system. We approach the operational flexibility of the TCLs by modeling a risk-averse aggregator that controls decentralized TCLs and aims to maximize its own profit. The high number and low power rating of residential TCLs makes it difficult to model and assess their flexibility potential on national level. Thus, we make use of a high-level thermal energy storage model for aggregations of TCLs to quantify their flexibility potential. We present a method to aggregate temperature, TCL parameters, and building stock data into a thermal battery equivalent. We propose a multi-period multi-market multi-zonal two-stage chance constrained rolling horizon optimization problem formulation for the risk-averse day-ahead self-scheduling problem of a price-taker TCL aggregator bidding in energy and reserve markets under uncertainty and recast the problem as a linear program. We perform several case studies in the Swedish power system based on a survey of single- and two-family dwellings with electric heating and assess the flexibility potential. Additionally, a sensitivity analysis provides insights regarding market design and policy implications.
Journal of Energy St... arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.107062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.107062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu