- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Funded by:UKRI | System-wide Probabilistic..., UKRI | System-wide Probabilistic..., UKRI | Supergen Energy Networks ...UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| Supergen Energy Networks hub 2018Authors: Jethro Browell; Ciaran Gilbert;doi: 10.3390/en15103645
Electricity imbalance pricing provides the ultimate incentive for generators and suppliers to contract with one another ahead of time and deliver against their obligations. As delivery time approaches, traders must judge whether to trade-out a position or settle it in the balancing market at the as-yet-unknown imbalance price. Forecasting the imbalance price (and related volumes) is therefore a necessity in short-term markets. However, this topic has received surprisingly little attention in the academic literature despite clear need by practitioners. Furthermore, the emergence of algorithmic trading demands automated forecasting and decision-making, with those best able to extract predictive information from available data gaining a competitive advantage. Here we present the case for developing imbalance price forecasting methods and provide motivating examples from the Great Britain’s balancing market, demonstrating forecast skill and value.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Future Power Networks and Smart GridsAuthors: Marcel Nedd; Jethro Browell; Keith Bell; Campbell Booth;There is a reduction in the percentage penetration of synchronous machines within the Great Britain (GB) power system leading to a decrease in inertia, and an increase in system rate of change of frequency (RoCoF) resulting from power imbalances. This raises the challenge of containing frequency deviations to within the relevant operational limits. As a result, steps need to be taken by the system operator to manage the risk to system security. In order to better understand this risk, this paper presents the challenge in light of the changing energy landscape and the current and future frequency response services available to contain frequency deviations. Although the current GB frequency response services may be capable of containing most events within frequency limits, in low inertia scenarios these responses alone are not capable of containing excursions within practical RoCoF limits. Consequently, further action must be taken to ensure system security. The system operator currently employs an interim solution of limiting the largest loss risk, depending on system inertia and the RoCoF limit. While this is suitable in the short-term, it is unlikely that this option will be cost-effective in the future.
CORE arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2019.2959996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2019.2959996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | System-wide Probabilistic..., UKRI | Doctoral Training Centre ...UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| Doctoral Training Centre in Wind Energy SystemsEdmunds, Calum; Martín-Martínez, Sergio; Browell, Jethro; Gómez-Lázaro, Emilio; Galloway, Stuart;Power systems require a wide range of ancillary services in order to function and renewables will be expected to provide such services in line with their increasing penetration. This paper focuses on the participation of wind energy in response and reserve markets. We compare the present situation in Great Britain (GB) and Spain, and make recommendations to support future development. Wind is already participating in a limited range of ancillary services in both countries: frequency response in GB and reserve services in Spain. We analyse the effects of market design, subsidy arrangements, and systemspecific needs on participation of wind in these markets, and then make policy recommendations designed to enable increased participation from wind. Our recommendations include the use of short-term markets to enable the use of accurate wind power forecasts, capacity-based subsidy schemes to avoid distorting ancillary service markets, and facilitating the participation of aggregated (single and mixed technology) resources. Country-specific recommendations include revising the current settlement process in GB to remove the incentive to over-estimate short-term generation forecasts, and establishing a competitive frequency containment reserve market in Spain. These recommendations are supported by analysis of publicly available market data.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Wind and Marine Energy SystemsAuthors: Ciaran Gilbert; Jethro Browell; David McMillan;This paper describes two methods for creating improved probabilistic wind power forecasts through the use of turbine-level data. The first is a feature engineering approach whereby deterministic power forecasts from the turbine level are used as explanatory variables in a wind farm level forecasting model. The second is a novel bottom-up hierarchical approach where the wind farm forecast is inferred from the joint predictive distribution of the power output from individual turbines. Notably, the latter produces probabilistic forecasts that are coherent across both turbine and farm levels, which the former does not. The methods are tested at two utility scale wind farms and are shown to provide consistent improvements of up to 5%, in terms of continuous ranked probability score compared to the best performing state-of-the-art benchmark model. The bottom-up hierarchical approach provides greater improvement at the site characterized by a complex layout and terrain, while both approaches perform similarly at the second location. We show that there is a clear benefit in leveraging readily available turbine-level information for wind power forecasting.
CORE arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2019.2920085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2019.2920085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Joseph de Vilmarest; Jethro Browell; Matteo Fasiolo; Yannig Goude; Olivier Wintenberger;Electricity load forecasting is a necessary capability for power system operators and electricity market participants. The proliferation of local generation, demand response, and electrification of heat and transport are changing the fundamental drivers of electricity load and increasing the complexity of load modelling and forecasting. We address this challenge in two ways. First, our setting is adaptive; our models take into account the most recent observations available, yielding a forecasting strategy able to automatically respond to changes in the underlying process. Second, we consider probabilistic rather than point forecasting; indeed, uncertainty quantification is required to operate electricity systems efficiently and reliably. Our methodology relies on the Kalman filter, previously used successfully for adaptive point load forecasting. The probabilistic forecasts are obtained by quantile regressions on the residuals of the point forecasting model. We achieve adaptive quantile regressions using the online gradient descent; we avoid the choice of the gradient step size considering multiple learning rates and aggregation of experts. We apply the method to two data sets: the regional net-load in Great Britain and the demand of seven large cities in the United States. Adaptive procedures improve forecast performance substantially in both use cases for both point and probabilistic forecasting.
arXiv.org e-Print Ar... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3310280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3310280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: R. Tawn; Jethro Browell; Jethro Browell;Abstract Installed capacities of wind and solar power have grown rapidly over recent years, and the pool of literature on very short-term (minutes- to hours-ahead) wind and solar forecasting has grown in line with this. This paper reviews established and emerging approaches to provide an up-to-date view of the field. Knowledge transfer between wind and solar forecasting has benefited the field and is discussed, and new opportunities are identified, particularly regarding use of remote sensing technology. Forecasting methodologies and study design are compared and recommendations for high quality, reproducible results are presented. In particular, the choice of suitable benchmarks and use of sufficiently long datasets is highlighted. A case study of three distinct approaches to probabilistic wind power forecasting is presented using an open dataset. The case study provides an example of exemplary forecast evaluation, and open source code allows for its reproduction and use in future work.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gordon McFadzean; Ciaran Gilbert; Jethro Browell;Outputs from the Network Innovation Allowance project "Control REACT" (workstream 2), sponsored by National Grid Electricity System Operator (NGESO). This deposit contains underlying data used in this project. The R code (Rmarkdown) and html renders of these workbooks are available in a separate deposit linked below. See description there for further details. In order to run the R scripts, data and code must be arranged in the directory structure given in "Directory Structure.pdf". Wind, solar and net-demand data are derived from raw data made available by Elexon and Solar Sheffield via public APIs. See respective websites for details, our processed (aggregated and cleaned) versions of this data are shared here under a CC-BY license. Weather forecast data are derived from historic operational forecasts from the ECMWF HRES model and are shared under a CC-BY licence. For details on how these were processed please see references. {"references": ["J. Browell and M. Fasiolo, \"Probabilistic Forecasting of regional net-load with conditional extremes and gridded NWP\", IEEE Transactions on Smart Grid, vol. 12, no, 6, pp. 5011-5019, 2021", "C. Gilbert \"Topics in high dimensional energy forecasting\", J. Browell & D. McMillan, degree supervisors; Centre for Doctoral Training in Wind and Marine Energy Systems; Department of Electronic and Electrical Engineering Thesis [PhD] 2021"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 35 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 United KingdomPublisher:Elsevier BV Authors: Rosemary Tawn; Jethro Browell; Iain Dinwoodie;Missing or corrupt data is common in real-world datasets; this affects the estimation and operation of analytical models where completeness is assumed or required. Statistical wind power forecasts utilise recent turbine data as model inputs, and must therefore be robust to missing data. We find that wind power data is ‘missing not at random’, with missing patterns also related to the forecast output. Approaches for dealing with this missing data in training and operation are proposed and evaluated through a case study, leading to a suggested forecasting methodology in the presence of missing data. In the training set, missing data was found to have significant negative impact on performance if simply omitted but this can be almost completely mitigated using multiple imputation. Greater increase in forecast errors is seen when input data are missing operationally, and retraining forecast models using the remaining inputs is found to be preferable to imputation.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Electric Power Systems ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2020.106640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Electric Power Systems ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2020.106640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Other literature type 2019 United KingdomPublisher:IEEE Authors: Gilbert, Ciaran; Browell, Jethro; McMillan, David;Access forecasting for offshore wind farm operations is concerned with the prediction of conditions during transfer of personnel between offshore structures and vessels. Currently dispatch/scheduling decisions are typically made on the basis of single-valued forecasts of significant wave height from a numerical weather prediction model. The aim of this study is to move beyond the significant wave height metric using a data-driven methodology to estimate vessel motion during transfer. This is because turbine access is constrained by the behaviour of crew transfer vessels and the transition piece in the local wave climate. Using generalised additive models for location, scale, and shape, we map the relationship between measured vessel heave motion and measured wave conditions in terms of significant wave height, peak wave period, and peak wave direction. This is explored via a case study where measurements are collected via vessel telemetry and an on-site wave buoy during the construction phase of an east coast offshore wind farm in the UK. Different model formulations are explored and the best performing trained model, in terms of the Akaike Information Criterion, is defined. Operationally, this model is driven by temporal scenario forecasts of the input wave buoy measurements to estimate the vessel motion during transfer up to 5 days ahead.
CORE arrow_drop_down https://doi.org/10.1109/oceans...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefStrathprintsPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oceanse.2019.8867176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.1109/oceans...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefStrathprintsPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oceanse.2019.8867176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, DenmarkPublisher:Wiley Funded by:UKRI | System-wide Probabilistic...UKRI| System-wide Probabilistic Energy ForecastingJakob W. Messner; Pierre Pinson; Jethro Browell; Mathias B. Bjerregård; Irene Schicker;doi: 10.1002/we.2497
AbstractWind power forecast evaluation is of key importance for forecast provider selection, forecast quality control, and model development. While forecasts are most often evaluated based on squared or absolute errors, these error measures do not always adequately reflect the loss functions and true expectations of the forecast user, neither do they provide enough information for the desired evaluation task. Over the last decade, research in forecast verification has intensified, and a number of verification frameworks and diagnostic tools have been proposed. However, the corresponding literature is generally very technical and most often dedicated to forecast model developers. This can make forecast users struggle to select the most appropriate verification tools for their application while not fully appraising subtleties related to their application and interpretation. This paper revisits the most common verification tools from a forecast user perspective and discusses their suitability for different application examples as well as evaluation setup design and significance of evaluation results.
CORE arrow_drop_down Wind EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Wind EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Funded by:UKRI | System-wide Probabilistic..., UKRI | System-wide Probabilistic..., UKRI | Supergen Energy Networks ...UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| Supergen Energy Networks hub 2018Authors: Jethro Browell; Ciaran Gilbert;doi: 10.3390/en15103645
Electricity imbalance pricing provides the ultimate incentive for generators and suppliers to contract with one another ahead of time and deliver against their obligations. As delivery time approaches, traders must judge whether to trade-out a position or settle it in the balancing market at the as-yet-unknown imbalance price. Forecasting the imbalance price (and related volumes) is therefore a necessity in short-term markets. However, this topic has received surprisingly little attention in the academic literature despite clear need by practitioners. Furthermore, the emergence of algorithmic trading demands automated forecasting and decision-making, with those best able to extract predictive information from available data gaining a competitive advantage. Here we present the case for developing imbalance price forecasting methods and provide motivating examples from the Great Britain’s balancing market, demonstrating forecast skill and value.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Future Power Networks and Smart GridsAuthors: Marcel Nedd; Jethro Browell; Keith Bell; Campbell Booth;There is a reduction in the percentage penetration of synchronous machines within the Great Britain (GB) power system leading to a decrease in inertia, and an increase in system rate of change of frequency (RoCoF) resulting from power imbalances. This raises the challenge of containing frequency deviations to within the relevant operational limits. As a result, steps need to be taken by the system operator to manage the risk to system security. In order to better understand this risk, this paper presents the challenge in light of the changing energy landscape and the current and future frequency response services available to contain frequency deviations. Although the current GB frequency response services may be capable of containing most events within frequency limits, in low inertia scenarios these responses alone are not capable of containing excursions within practical RoCoF limits. Consequently, further action must be taken to ensure system security. The system operator currently employs an interim solution of limiting the largest loss risk, depending on system inertia and the RoCoF limit. While this is suitable in the short-term, it is unlikely that this option will be cost-effective in the future.
CORE arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2019.2959996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tia.2019.2959996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | System-wide Probabilistic..., UKRI | Doctoral Training Centre ...UKRI| System-wide Probabilistic Energy Forecasting ,UKRI| Doctoral Training Centre in Wind Energy SystemsEdmunds, Calum; Martín-Martínez, Sergio; Browell, Jethro; Gómez-Lázaro, Emilio; Galloway, Stuart;Power systems require a wide range of ancillary services in order to function and renewables will be expected to provide such services in line with their increasing penetration. This paper focuses on the participation of wind energy in response and reserve markets. We compare the present situation in Great Britain (GB) and Spain, and make recommendations to support future development. Wind is already participating in a limited range of ancillary services in both countries: frequency response in GB and reserve services in Spain. We analyse the effects of market design, subsidy arrangements, and systemspecific needs on participation of wind in these markets, and then make policy recommendations designed to enable increased participation from wind. Our recommendations include the use of short-term markets to enable the use of accurate wind power forecasts, capacity-based subsidy schemes to avoid distorting ancillary service markets, and facilitating the participation of aggregated (single and mixed technology) resources. Country-specific recommendations include revising the current settlement process in GB to remove the incentive to over-estimate short-term generation forecasts, and establishing a competitive frequency containment reserve market in Spain. These recommendations are supported by analysis of publicly available market data.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Wind and Marine Energy SystemsAuthors: Ciaran Gilbert; Jethro Browell; David McMillan;This paper describes two methods for creating improved probabilistic wind power forecasts through the use of turbine-level data. The first is a feature engineering approach whereby deterministic power forecasts from the turbine level are used as explanatory variables in a wind farm level forecasting model. The second is a novel bottom-up hierarchical approach where the wind farm forecast is inferred from the joint predictive distribution of the power output from individual turbines. Notably, the latter produces probabilistic forecasts that are coherent across both turbine and farm levels, which the former does not. The methods are tested at two utility scale wind farms and are shown to provide consistent improvements of up to 5%, in terms of continuous ranked probability score compared to the best performing state-of-the-art benchmark model. The bottom-up hierarchical approach provides greater improvement at the site characterized by a complex layout and terrain, while both approaches perform similarly at the second location. We show that there is a clear benefit in leveraging readily available turbine-level information for wind power forecasting.
CORE arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2019.2920085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2019.2920085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Joseph de Vilmarest; Jethro Browell; Matteo Fasiolo; Yannig Goude; Olivier Wintenberger;Electricity load forecasting is a necessary capability for power system operators and electricity market participants. The proliferation of local generation, demand response, and electrification of heat and transport are changing the fundamental drivers of electricity load and increasing the complexity of load modelling and forecasting. We address this challenge in two ways. First, our setting is adaptive; our models take into account the most recent observations available, yielding a forecasting strategy able to automatically respond to changes in the underlying process. Second, we consider probabilistic rather than point forecasting; indeed, uncertainty quantification is required to operate electricity systems efficiently and reliably. Our methodology relies on the Kalman filter, previously used successfully for adaptive point load forecasting. The probabilistic forecasts are obtained by quantile regressions on the residuals of the point forecasting model. We achieve adaptive quantile regressions using the online gradient descent; we avoid the choice of the gradient step size considering multiple learning rates and aggregation of experts. We apply the method to two data sets: the regional net-load in Great Britain and the demand of seven large cities in the United States. Adaptive procedures improve forecast performance substantially in both use cases for both point and probabilistic forecasting.
arXiv.org e-Print Ar... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3310280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3310280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: R. Tawn; Jethro Browell; Jethro Browell;Abstract Installed capacities of wind and solar power have grown rapidly over recent years, and the pool of literature on very short-term (minutes- to hours-ahead) wind and solar forecasting has grown in line with this. This paper reviews established and emerging approaches to provide an up-to-date view of the field. Knowledge transfer between wind and solar forecasting has benefited the field and is discussed, and new opportunities are identified, particularly regarding use of remote sensing technology. Forecasting methodologies and study design are compared and recommendations for high quality, reproducible results are presented. In particular, the choice of suitable benchmarks and use of sufficiently long datasets is highlighted. A case study of three distinct approaches to probabilistic wind power forecasting is presented using an open dataset. The case study provides an example of exemplary forecast evaluation, and open source code allows for its reproduction and use in future work.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gordon McFadzean; Ciaran Gilbert; Jethro Browell;Outputs from the Network Innovation Allowance project "Control REACT" (workstream 2), sponsored by National Grid Electricity System Operator (NGESO). This deposit contains underlying data used in this project. The R code (Rmarkdown) and html renders of these workbooks are available in a separate deposit linked below. See description there for further details. In order to run the R scripts, data and code must be arranged in the directory structure given in "Directory Structure.pdf". Wind, solar and net-demand data are derived from raw data made available by Elexon and Solar Sheffield via public APIs. See respective websites for details, our processed (aggregated and cleaned) versions of this data are shared here under a CC-BY license. Weather forecast data are derived from historic operational forecasts from the ECMWF HRES model and are shared under a CC-BY licence. For details on how these were processed please see references. {"references": ["J. Browell and M. Fasiolo, \"Probabilistic Forecasting of regional net-load with conditional extremes and gridded NWP\", IEEE Transactions on Smart Grid, vol. 12, no, 6, pp. 5011-5019, 2021", "C. Gilbert \"Topics in high dimensional energy forecasting\", J. Browell & D. McMillan, degree supervisors; Centre for Doctoral Training in Wind and Marine Energy Systems; Department of Electronic and Electrical Engineering Thesis [PhD] 2021"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 35 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 United KingdomPublisher:Elsevier BV Authors: Rosemary Tawn; Jethro Browell; Iain Dinwoodie;Missing or corrupt data is common in real-world datasets; this affects the estimation and operation of analytical models where completeness is assumed or required. Statistical wind power forecasts utilise recent turbine data as model inputs, and must therefore be robust to missing data. We find that wind power data is ‘missing not at random’, with missing patterns also related to the forecast output. Approaches for dealing with this missing data in training and operation are proposed and evaluated through a case study, leading to a suggested forecasting methodology in the presence of missing data. In the training set, missing data was found to have significant negative impact on performance if simply omitted but this can be almost completely mitigated using multiple imputation. Greater increase in forecast errors is seen when input data are missing operationally, and retraining forecast models using the remaining inputs is found to be preferable to imputation.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Electric Power Systems ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2020.106640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Electric Power Systems ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2020.106640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Other literature type 2019 United KingdomPublisher:IEEE Authors: Gilbert, Ciaran; Browell, Jethro; McMillan, David;Access forecasting for offshore wind farm operations is concerned with the prediction of conditions during transfer of personnel between offshore structures and vessels. Currently dispatch/scheduling decisions are typically made on the basis of single-valued forecasts of significant wave height from a numerical weather prediction model. The aim of this study is to move beyond the significant wave height metric using a data-driven methodology to estimate vessel motion during transfer. This is because turbine access is constrained by the behaviour of crew transfer vessels and the transition piece in the local wave climate. Using generalised additive models for location, scale, and shape, we map the relationship between measured vessel heave motion and measured wave conditions in terms of significant wave height, peak wave period, and peak wave direction. This is explored via a case study where measurements are collected via vessel telemetry and an on-site wave buoy during the construction phase of an east coast offshore wind farm in the UK. Different model formulations are explored and the best performing trained model, in terms of the Akaike Information Criterion, is defined. Operationally, this model is driven by temporal scenario forecasts of the input wave buoy measurements to estimate the vessel motion during transfer up to 5 days ahead.
CORE arrow_drop_down https://doi.org/10.1109/oceans...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefStrathprintsPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oceanse.2019.8867176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.1109/oceans...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefStrathprintsPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oceanse.2019.8867176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, DenmarkPublisher:Wiley Funded by:UKRI | System-wide Probabilistic...UKRI| System-wide Probabilistic Energy ForecastingJakob W. Messner; Pierre Pinson; Jethro Browell; Mathias B. Bjerregård; Irene Schicker;doi: 10.1002/we.2497
AbstractWind power forecast evaluation is of key importance for forecast provider selection, forecast quality control, and model development. While forecasts are most often evaluated based on squared or absolute errors, these error measures do not always adequately reflect the loss functions and true expectations of the forecast user, neither do they provide enough information for the desired evaluation task. Over the last decade, research in forecast verification has intensified, and a number of verification frameworks and diagnostic tools have been proposed. However, the corresponding literature is generally very technical and most often dedicated to forecast model developers. This can make forecast users struggle to select the most appropriate verification tools for their application while not fully appraising subtleties related to their application and interpretation. This paper revisits the most common verification tools from a forecast user perspective and discusses their suitability for different application examples as well as evaluation setup design and significance of evaluation results.
CORE arrow_drop_down Wind EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Wind EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu