- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Yuna Hao; Behrang Vand; Benjamin Manrique Delgado; Simone Baldi;doi: 10.3390/en16041894
In recent years, algorithmic-based market manipulation in stock and power markets has considerably increased, and it is difficult to identify all such manipulation cases. This causes serious challenges for market regulators. This work highlights and lists various aspects of the monitoring of stock and power markets, using as test cases the regulatory agencies and regulatory policies in diverse regions, including Hong Kong, the United Kingdom, the United States and the European Union. Reported cases of market manipulations in the regions are examined. In order to help establish a relevant digital regulatory system, this work reviews and categorizes the indicators used to monitor the stock and power markets, and provides an in-depth analysis of the relationship between the indicators and market manipulation. This study specifically compiles a set of 10 indicators for detecting manipulation in the stock market, utilizing the perspectives of return rate, liquidity, volatility, market sentiment, closing price and firm governance. Additionally, 15 indicators are identified for detecting manipulation in the power market, utilizing the perspectives of market power (also known as pricing power or market structure), market conduct and market performance. Finally, the study elaborates on the current challenges in the regulation of stock and power markets in terms of parameter performance, data availability and technical requirements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Georgakarakos, A.D.; Vand, B.; Hathway, E.A.; Mayfield, M.;This study investigates Smart Grid Optimised Buildings (SGOBs) which can respond to real-time electricity prices by utilising battery storage systems (BSS). Different building design characteristics are assessed to evaluate the impact on energy use, the interaction with the battery, and potential for peak load shifting. Two extreme cases based on minimum and maximum annual energy consumption were selected for further investigation to assess their capability of utilising BSS to perform arbitrage, under real-time pricing. Three operational dispatch strategies were modelled to allow buildings to provide such services. The most energy-efficient building was capable of shifting a higher percentage of its peak loads and export more electricity, when this is allowed. When using the biggest battery (220 kWh) to only meet the building loads, the energy-efficient building was able to shift 39.68% of its original peak loads in comparison to the 33.95% of the least efficient building. With exports allowed, the shifting percentages went down to 31.76% and 29.46%, respectively, while exports of 18.08 and 16.34 kWh/m2 took place. The formation of a regulatory framework is vital in order to establish proper motives for buildings to undertake an active role in the smart grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings11100433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings11100433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Paola Seminara; Behrang Vand; Seyed Masoud Sajjadian; Laura Tupenaite;doi: 10.3390/su14031242
Buildings are one of the largest contributors to energy consumption and greenhouse gas emissions (GHG) in the world. There is an increased interest in building performance evaluation as an essential practice to design a sustainable building. Building performance is influenced by various terms, for example, designs, construction-related factors such as building envelope and airtightness, and energy technologies with or without micro-generations. How well a building performs thermally is key to determining the level of energy demand and GHG emissions. Building standards and regulations, in combination with assessments (e.g., energy modeling tools) and certifications, provide sets of supports, guidelines and instructions for designers and building engineers to ensure users’ health and well-being, consistency in construction practices and environmental protection. This paper reviews, evaluates and suggests a sequence of building performance methods from the UK perspective. It shows the relationships between such methods, their evolutions and related tools, and further highlights the importance of post-occupancy analysis and how crucial such assessments could be for efficient buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 27 Nov 2020 FinlandPublisher:Informa UK Limited Vand, Behrang; Martin, Kristian; Jokisalo, Juha; Kosonen, Risto; Hast; Aira;This study examines the influence of demand-response control strategies on thermal conditions, indoor air CO2 concentration, and heating energy cost and consumption in an educational office buildin...
Science and Technolo... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication ArchiveScience and Technology for the Built EnvironmentArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/23744731.2019.1693207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Science and Technolo... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication ArchiveScience and Technology for the Built EnvironmentArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/23744731.2019.1693207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 FinlandPublisher:MDPI AG Vand, Behrang; Hast, Aira; Bozorg, Sanaz; Li, Zelin; Syri, Sanna; Deng; Shuai;doi: 10.3390/en12122379
Residents’ willingness to use green energy products is a major concern for different stakeholders and policymakers due to the reformed Chinese electricity market since 2015. This study focused on the Chinese consumer’s willingness to opt and pay for environmentally-friendly electricity sources in Shanghai’s residential sector. A questionnaire survey was used to find out the influence of gender, age, education, awareness and income level on consumers’ attitudes to alter their energy sources to green ones. The results indicated that income level and awareness are significant barriers in the usage of green energy products. Increasing the respondent’s awareness about the issues of non-green energy products convinced 97% of them to change their electricity sources completely or partly, in line with their monthly income. This clearly shows that clarifying the benefits of green energy products is a key tool to achieve a green environment in China.
Energies arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Xiaoting Chen; Behrang Vand; Simone Baldi;Achieving climate neutrality requires reducing energy consumption and CO2 emissions in the building sector, which has prompted increasing attention towards nearly zero energy, zero energy, and positive energy communities of buildings; there is a need to determine how individual buildings up to communities of buildings can become more energy efficient. This study addresses the scientific problem of optimizing energy efficiency strategies in building areas and identifies gaps in existing theories related to passive design strategies, active energy systems, and renewable energy integration. This study delineates boundaries at the building and community scales to examine the challenges of attaining energy efficiency goals and to emphasize the intricate processes of selecting, integrating, and optimizing energy systems in buildings. The four boundaries describe: (B1) energy flows through the building envelope; (B2) energy flows through heating, ventilation, air conditioning and energy systems; (B3) energy flows through individual buildings; (B4) energy flows through a community of buildings. Current theories often treat these elements in isolation, and significant gaps exist in interdisciplinary integration, scalable frameworks, and the consideration of behavioral and socioeconomic factors. Achieving nearly zero energy, zero energy, and positive energy communities requires seamless integration of renewable energy sources, energy storage systems, and energy management systems. The proposed boundaries B1–B4 can help not only in analyzing the various challenges for achieving high energy efficiency in building communities but also in defining and evaluating these communities and establishing fair methods for energy distribution within them. The results demonstrate that these boundaries provide a comprehensive framework for energy-efficient designs, constructions, and operational practices across multiple buildings, ensuring equitable energy distribution and optimized performance. In addition, the definition of boundaries as B1-B4 contributes to providing an interface for energy-efficient designs, constructions and operational practices across multiple buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings14061839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings14061839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, FinlandPublisher:Elsevier BV Reino Ruusu; Behrang Vand; Behrang Vand; Ala Hasan; Benjamin Manrique Delgado;Exporting generated electricity by on-site renewable energy systems from buildings to the grid is only slightly profitable in many countries. Therefore, it is required to investigate the benefits of sharing generated energy in a microgrid within a community of buildings. Exploiting the benefits of peer-to-peer energy exchange between prosumers in a community can make the best use of the on-site generation while reducing their bills. This study elaborates the potential of energy management to minimize the electricity cost of a community consisted of multiple buildings and connected to a microgrid. To implement this, an energy management system is designed based on non-linear economic model predictive control and successive linear programming for sharing the on-site surplus generated electricity between the buildings in the community. Four buildings are simulated and studied as an example of a small community. These buildings are dissimilar in their age, thermal mass, insulation, heating system and on-site renewable energy systems. It is shown that considering the community of buildings as a single entity, the novel model predictive control can be efficiently used for minimizing the energy cost of the community that has various sources of energy generation, conversion and storage, including significant non-linear interactions. Three different scenarios of the energy management system for the studied community are investigated, and the results indicate that the annual electricity energy cost for single buildings can be reduced by 3.0% to 87.9%, depending on the building and its systems, and by 5.4% to 7.7% on the community level.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Elsevier BV Funded by:EC | DEW-COOL, EC | R-D-SBES-REC| DEW-COOL ,EC| R-D-SBES-RXudong Zhao; Ala Hasan; Xingxing Zhang; Zhiyin Duan; Changhong Zhan; Mahmud Mustafa; Behrang Alimohammadisagvand;This paper reported a review based study into the Indirect Evaporative Cooling (IEC) technology, which was undertaken from a variety of aspects including background, history, current status, concept, standardisation, system configuration, operational mode, research and industrialisation, market prospect and barriers, as well as the future focuses on RD good distribution of the water stream across the wet surface of the exchanger plate (tube) and adequate (matching up the evaporation) control of the water flow rate are critical to achieving the expected system performance. It was noticed that the IEC devices were always in combined operation with other cooling measures and the commonly available IEC related operational modes are (1) IEC/DEC system; (2) IEC/DEC/mechanical vapour compression system; (3) IEC/desiccant system; (4) IEC/chilled water system; and (5) IEC/heat pipe system. The future potential operational modes may also cover the IEC-inclusive fan coil units, air handle units, cooling towers, solar driven desiccant cycle, and Rankine cycle based power generation system etc. Future works on the IEC technology may focus on (1) heat exchanger structure and material; (2) water flowing, distribution and treatment; (3) incorporation of the IEC components into conventional air conditioning products to enable combined operation between the IEC and other cooling devices; (4) economic, environment and social impacts; (5) standardisation and legislation; (6) public awareness and other dissemination measures; and (7) manufacturing and commercialisation. All above addressed efforts may help increase the market ratio of the IEC to around 20% in the next 20 years, which will lead to significant saving of fossil fuel consumption and cut of carbon emission related to buildings.
De Montfort Universi... arrow_drop_down De Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveRenewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 356 citations 356 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert De Montfort Universi... arrow_drop_down De Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveRenewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Antoine Reguis; Behrang Vand; John Currie;doi: 10.3390/en14217181
To reach net-zero emissions by 2050, buildings in the UK need to replace natural gas boilers with heat pumps and district heating. These technologies are efficient at reduced flow/return temperatures, typically 55/25 °C, while traditional heating systems are designed for 82/71 °C, and an oversized heating system can help this temperature transition. This paper reviews how heating systems have been sized over time in the UK and the degree of oversizing in existing buildings. It also reviews if lessons from other countries can be applied to the UK’s building stock. The results show that methods to size a heating system have not changed over time, but the modern level of comfort, the retrofit history of buildings and the use of margin lead to the heating system being generally oversized. It is not possible to identify a specific trend by age, use or archetype. Buildings in Scandinavia have a nascent readiness for low-temperature heat as they can use it for most of the year without retrofit. Limitations come primarily from the faults and malfunctions of such systems. In the UK, it is estimated that 10% of domestic buildings would be ready for a supply temperature of 55 °C during extreme external conditions and more buildings at part-load operation. Lessons from Scandinavia should be considered with caution. The building stock in the UK generally underperforms compared to other EU buildings, with heating systems in the UK operating at higher temperatures and with night set-back; the importance of providing a low-return temperature does not exist in the UK despite being beneficial for condensing boiler operation. Sweden and Denmark started to develop district heating technologies with limitations to supply temperatures some 40 years ago whereas the UK is only just starting to consider similar measures in 2021. Recommendations for policy makers in this context have been drawn from this review in the conclusions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: J. Richard Snape; Samira Ali; Behrang Vand; Mahmud Mustafa;Energy consumption in cooling the buildings and occupant’s thermal comfort is significant, and any techniques to reduce this can bring great benefits, both locally in terms of reducing the need for expensive infrastructure and globally in terms of reduced carbon emissions. This study focuses on Northern Iraq, Kurdistan. This area suffers from a shortage of electricity production, alongside a high and growing demand due to the rapid expansion in the residential building sector over the last few decades through investment projects. The cooling energy performance of a typical house in Kurdistan was simulated, using DesignBuilder and EnergyPlus software. The study identified the most effective parameters of the building fabrications to be applied for enhancing the energy performance of residential buildings such as insulation, suspended ceiling, window glazing, overhang, and block type. The study found the parameters with the most impact on energy consumption to be suspended ceiling and insulation that could save a high rate of energy consumption. The impact of the clear double glazing and overhang of the windows are generally low, due to the low window/wall ratio and the availability of the internal curtain in the building. Finally, the optimum parameter values are identified and used in energy demand simulations, it showed that by using the optimum parameters of the building fabrications, 28.35% of the annual energy used could be saved from cooling in the house module.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Yuna Hao; Behrang Vand; Benjamin Manrique Delgado; Simone Baldi;doi: 10.3390/en16041894
In recent years, algorithmic-based market manipulation in stock and power markets has considerably increased, and it is difficult to identify all such manipulation cases. This causes serious challenges for market regulators. This work highlights and lists various aspects of the monitoring of stock and power markets, using as test cases the regulatory agencies and regulatory policies in diverse regions, including Hong Kong, the United Kingdom, the United States and the European Union. Reported cases of market manipulations in the regions are examined. In order to help establish a relevant digital regulatory system, this work reviews and categorizes the indicators used to monitor the stock and power markets, and provides an in-depth analysis of the relationship between the indicators and market manipulation. This study specifically compiles a set of 10 indicators for detecting manipulation in the stock market, utilizing the perspectives of return rate, liquidity, volatility, market sentiment, closing price and firm governance. Additionally, 15 indicators are identified for detecting manipulation in the power market, utilizing the perspectives of market power (also known as pricing power or market structure), market conduct and market performance. Finally, the study elaborates on the current challenges in the regulation of stock and power markets in terms of parameter performance, data availability and technical requirements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Georgakarakos, A.D.; Vand, B.; Hathway, E.A.; Mayfield, M.;This study investigates Smart Grid Optimised Buildings (SGOBs) which can respond to real-time electricity prices by utilising battery storage systems (BSS). Different building design characteristics are assessed to evaluate the impact on energy use, the interaction with the battery, and potential for peak load shifting. Two extreme cases based on minimum and maximum annual energy consumption were selected for further investigation to assess their capability of utilising BSS to perform arbitrage, under real-time pricing. Three operational dispatch strategies were modelled to allow buildings to provide such services. The most energy-efficient building was capable of shifting a higher percentage of its peak loads and export more electricity, when this is allowed. When using the biggest battery (220 kWh) to only meet the building loads, the energy-efficient building was able to shift 39.68% of its original peak loads in comparison to the 33.95% of the least efficient building. With exports allowed, the shifting percentages went down to 31.76% and 29.46%, respectively, while exports of 18.08 and 16.34 kWh/m2 took place. The formation of a regulatory framework is vital in order to establish proper motives for buildings to undertake an active role in the smart grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings11100433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings11100433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Paola Seminara; Behrang Vand; Seyed Masoud Sajjadian; Laura Tupenaite;doi: 10.3390/su14031242
Buildings are one of the largest contributors to energy consumption and greenhouse gas emissions (GHG) in the world. There is an increased interest in building performance evaluation as an essential practice to design a sustainable building. Building performance is influenced by various terms, for example, designs, construction-related factors such as building envelope and airtightness, and energy technologies with or without micro-generations. How well a building performs thermally is key to determining the level of energy demand and GHG emissions. Building standards and regulations, in combination with assessments (e.g., energy modeling tools) and certifications, provide sets of supports, guidelines and instructions for designers and building engineers to ensure users’ health and well-being, consistency in construction practices and environmental protection. This paper reviews, evaluates and suggests a sequence of building performance methods from the UK perspective. It shows the relationships between such methods, their evolutions and related tools, and further highlights the importance of post-occupancy analysis and how crucial such assessments could be for efficient buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 27 Nov 2020 FinlandPublisher:Informa UK Limited Vand, Behrang; Martin, Kristian; Jokisalo, Juha; Kosonen, Risto; Hast; Aira;This study examines the influence of demand-response control strategies on thermal conditions, indoor air CO2 concentration, and heating energy cost and consumption in an educational office buildin...
Science and Technolo... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication ArchiveScience and Technology for the Built EnvironmentArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/23744731.2019.1693207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Science and Technolo... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication ArchiveScience and Technology for the Built EnvironmentArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/23744731.2019.1693207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 FinlandPublisher:MDPI AG Vand, Behrang; Hast, Aira; Bozorg, Sanaz; Li, Zelin; Syri, Sanna; Deng; Shuai;doi: 10.3390/en12122379
Residents’ willingness to use green energy products is a major concern for different stakeholders and policymakers due to the reformed Chinese electricity market since 2015. This study focused on the Chinese consumer’s willingness to opt and pay for environmentally-friendly electricity sources in Shanghai’s residential sector. A questionnaire survey was used to find out the influence of gender, age, education, awareness and income level on consumers’ attitudes to alter their energy sources to green ones. The results indicated that income level and awareness are significant barriers in the usage of green energy products. Increasing the respondent’s awareness about the issues of non-green energy products convinced 97% of them to change their electricity sources completely or partly, in line with their monthly income. This clearly shows that clarifying the benefits of green energy products is a key tool to achieve a green environment in China.
Energies arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Aaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Xiaoting Chen; Behrang Vand; Simone Baldi;Achieving climate neutrality requires reducing energy consumption and CO2 emissions in the building sector, which has prompted increasing attention towards nearly zero energy, zero energy, and positive energy communities of buildings; there is a need to determine how individual buildings up to communities of buildings can become more energy efficient. This study addresses the scientific problem of optimizing energy efficiency strategies in building areas and identifies gaps in existing theories related to passive design strategies, active energy systems, and renewable energy integration. This study delineates boundaries at the building and community scales to examine the challenges of attaining energy efficiency goals and to emphasize the intricate processes of selecting, integrating, and optimizing energy systems in buildings. The four boundaries describe: (B1) energy flows through the building envelope; (B2) energy flows through heating, ventilation, air conditioning and energy systems; (B3) energy flows through individual buildings; (B4) energy flows through a community of buildings. Current theories often treat these elements in isolation, and significant gaps exist in interdisciplinary integration, scalable frameworks, and the consideration of behavioral and socioeconomic factors. Achieving nearly zero energy, zero energy, and positive energy communities requires seamless integration of renewable energy sources, energy storage systems, and energy management systems. The proposed boundaries B1–B4 can help not only in analyzing the various challenges for achieving high energy efficiency in building communities but also in defining and evaluating these communities and establishing fair methods for energy distribution within them. The results demonstrate that these boundaries provide a comprehensive framework for energy-efficient designs, constructions, and operational practices across multiple buildings, ensuring equitable energy distribution and optimized performance. In addition, the definition of boundaries as B1-B4 contributes to providing an interface for energy-efficient designs, constructions and operational practices across multiple buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings14061839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings14061839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, FinlandPublisher:Elsevier BV Reino Ruusu; Behrang Vand; Behrang Vand; Ala Hasan; Benjamin Manrique Delgado;Exporting generated electricity by on-site renewable energy systems from buildings to the grid is only slightly profitable in many countries. Therefore, it is required to investigate the benefits of sharing generated energy in a microgrid within a community of buildings. Exploiting the benefits of peer-to-peer energy exchange between prosumers in a community can make the best use of the on-site generation while reducing their bills. This study elaborates the potential of energy management to minimize the electricity cost of a community consisted of multiple buildings and connected to a microgrid. To implement this, an energy management system is designed based on non-linear economic model predictive control and successive linear programming for sharing the on-site surplus generated electricity between the buildings in the community. Four buildings are simulated and studied as an example of a small community. These buildings are dissimilar in their age, thermal mass, insulation, heating system and on-site renewable energy systems. It is shown that considering the community of buildings as a single entity, the novel model predictive control can be efficiently used for minimizing the energy cost of the community that has various sources of energy generation, conversion and storage, including significant non-linear interactions. Three different scenarios of the energy management system for the studied community are investigated, and the results indicate that the annual electricity energy cost for single buildings can be reduced by 3.0% to 87.9%, depending on the building and its systems, and by 5.4% to 7.7% on the community level.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Elsevier BV Funded by:EC | DEW-COOL, EC | R-D-SBES-REC| DEW-COOL ,EC| R-D-SBES-RXudong Zhao; Ala Hasan; Xingxing Zhang; Zhiyin Duan; Changhong Zhan; Mahmud Mustafa; Behrang Alimohammadisagvand;This paper reported a review based study into the Indirect Evaporative Cooling (IEC) technology, which was undertaken from a variety of aspects including background, history, current status, concept, standardisation, system configuration, operational mode, research and industrialisation, market prospect and barriers, as well as the future focuses on RD good distribution of the water stream across the wet surface of the exchanger plate (tube) and adequate (matching up the evaporation) control of the water flow rate are critical to achieving the expected system performance. It was noticed that the IEC devices were always in combined operation with other cooling measures and the commonly available IEC related operational modes are (1) IEC/DEC system; (2) IEC/DEC/mechanical vapour compression system; (3) IEC/desiccant system; (4) IEC/chilled water system; and (5) IEC/heat pipe system. The future potential operational modes may also cover the IEC-inclusive fan coil units, air handle units, cooling towers, solar driven desiccant cycle, and Rankine cycle based power generation system etc. Future works on the IEC technology may focus on (1) heat exchanger structure and material; (2) water flowing, distribution and treatment; (3) incorporation of the IEC components into conventional air conditioning products to enable combined operation between the IEC and other cooling devices; (4) economic, environment and social impacts; (5) standardisation and legislation; (6) public awareness and other dissemination measures; and (7) manufacturing and commercialisation. All above addressed efforts may help increase the market ratio of the IEC to around 20% in the next 20 years, which will lead to significant saving of fossil fuel consumption and cut of carbon emission related to buildings.
De Montfort Universi... arrow_drop_down De Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveRenewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 356 citations 356 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert De Montfort Universi... arrow_drop_down De Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveRenewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Antoine Reguis; Behrang Vand; John Currie;doi: 10.3390/en14217181
To reach net-zero emissions by 2050, buildings in the UK need to replace natural gas boilers with heat pumps and district heating. These technologies are efficient at reduced flow/return temperatures, typically 55/25 °C, while traditional heating systems are designed for 82/71 °C, and an oversized heating system can help this temperature transition. This paper reviews how heating systems have been sized over time in the UK and the degree of oversizing in existing buildings. It also reviews if lessons from other countries can be applied to the UK’s building stock. The results show that methods to size a heating system have not changed over time, but the modern level of comfort, the retrofit history of buildings and the use of margin lead to the heating system being generally oversized. It is not possible to identify a specific trend by age, use or archetype. Buildings in Scandinavia have a nascent readiness for low-temperature heat as they can use it for most of the year without retrofit. Limitations come primarily from the faults and malfunctions of such systems. In the UK, it is estimated that 10% of domestic buildings would be ready for a supply temperature of 55 °C during extreme external conditions and more buildings at part-load operation. Lessons from Scandinavia should be considered with caution. The building stock in the UK generally underperforms compared to other EU buildings, with heating systems in the UK operating at higher temperatures and with night set-back; the importance of providing a low-return temperature does not exist in the UK despite being beneficial for condensing boiler operation. Sweden and Denmark started to develop district heating technologies with limitations to supply temperatures some 40 years ago whereas the UK is only just starting to consider similar measures in 2021. Recommendations for policy makers in this context have been drawn from this review in the conclusions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: J. Richard Snape; Samira Ali; Behrang Vand; Mahmud Mustafa;Energy consumption in cooling the buildings and occupant’s thermal comfort is significant, and any techniques to reduce this can bring great benefits, both locally in terms of reducing the need for expensive infrastructure and globally in terms of reduced carbon emissions. This study focuses on Northern Iraq, Kurdistan. This area suffers from a shortage of electricity production, alongside a high and growing demand due to the rapid expansion in the residential building sector over the last few decades through investment projects. The cooling energy performance of a typical house in Kurdistan was simulated, using DesignBuilder and EnergyPlus software. The study identified the most effective parameters of the building fabrications to be applied for enhancing the energy performance of residential buildings such as insulation, suspended ceiling, window glazing, overhang, and block type. The study found the parameters with the most impact on energy consumption to be suspended ceiling and insulation that could save a high rate of energy consumption. The impact of the clear double glazing and overhang of the windows are generally low, due to the low window/wall ratio and the availability of the internal curtain in the building. Finally, the optimum parameter values are identified and used in energy demand simulations, it showed that by using the optimum parameters of the building fabrications, 28.35% of the annual energy used could be saved from cooling in the house module.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu