- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 TurkeyPublisher:Elsevier BV Authors: Laxmikant D. Jathar; Keval Chandrakant Nikam; Umesh V. Awasarmol; Raviraj Gurav; +9 AuthorsLaxmikant D. Jathar; Keval Chandrakant Nikam; Umesh V. Awasarmol; Raviraj Gurav; Jitendra D. Patil; Kiran Shahapurkar; Manzoore Elahi M. Soudagar; T. M. Yunus Khan; M.A. Kalam; Anna Hnydiuk-Stefan; Ali Etem Gürel; Anh Tuan Hoang; Ümit Ağbulut;pmid: 38371991
pmc: PMC10873676
L'intégration de systèmes photovoltaïques (PV), de technologies de dessalement et d'intelligence artificielle (IA) combinée à l'apprentissage automatique (ML) a introduit une nouvelle ère de recherche et d'innovation remarquables. Cet article de synthèse examine en profondeur les progrès récents dans le domaine, en se concentrant sur l'interaction entre les systèmes photovoltaïques et le dessalement de l'eau dans le cadre des applications d'IA et de ML, tout en analysant les recherches actuelles pour identifier les modèles, les obstacles et les perspectives importants dans ce domaine interdisciplinaire. En outre, l'examen examine l'intégration des méthodes d'IA et de ML dans l'amélioration des performances des systèmes photovoltaïques. Cela comprend l'augmentation de leur efficacité, la mise en œuvre de stratégies de maintenance prédictive et la surveillance en temps réel. Il explore également l'influence transformatrice des algorithmes intelligents sur les techniques de dessalement, en abordant spécifiquement les préoccupations relatives à la consommation d'énergie, à l'évolutivité et à la durabilité environnementale. Cet article fournit une analyse approfondie de la littérature actuelle, identifiant les domaines où la recherche fait défaut et suggérant des pistes d'investigation futures potentielles. Ces progrès ont permis d'accroître l'efficacité, de réduire les dépenses et d'améliorer la durabilité du système photovoltaïque. En utilisant des technologies d'intelligence artificielle, la productivité de l'eau douce peut augmenter de 10 % et l'efficacité. Cette revue offre des perspectives significatives et informatives pour les chercheurs, les ingénieurs et les décideurs politiques impliqués dans les technologies des énergies renouvelables et de l'eau. Il met en lumière les dernières avancées en matière de systèmes photovoltaïques et de dessalement, facilitées par l'IA et le ML. L'examen vise à orienter vers un avenir plus durable et technologiquement avancé. La integración de sistemas fotovoltaicos (PV), tecnologías de desalinización e Inteligencia Artificial (IA) combinada con Machine Learning (ML) ha introducido una nueva era de investigación e innovación notables. Este artículo de revisión examina a fondo los avances recientes en el campo, centrándose en la interacción entre los sistemas fotovoltaicos y la desalinización del agua en el marco de las aplicaciones de IA y ML, junto con el análisis de la investigación actual para identificar patrones, obstáculos y perspectivas significativos en este campo interdisciplinario. Además, la revisión examina la incorporación de métodos de IA y ML para mejorar el rendimiento de los sistemas fotovoltaicos. Esto incluye aumentar su eficiencia, implementar estrategias de mantenimiento predictivo y permitir el monitoreo en tiempo real. También explora la influencia transformadora de los algoritmos inteligentes en las técnicas de desalinización, abordando específicamente las preocupaciones relacionadas con el uso de energía, la escalabilidad y la sostenibilidad ambiental. Este artículo proporciona un análisis exhaustivo de la literatura actual, identificando áreas en las que falta investigación y sugiriendo posibles vías futuras para la investigación. Estos avances han dado como resultado una mayor eficiencia, una disminución de los gastos y una mejor sostenibilidad del sistema fotovoltaico. Al utilizar tecnologías de inteligencia artificial, la productividad y la eficiencia del agua dulce pueden aumentar en un 10 %. Esta revisión ofrece perspectivas significativas e informativas para investigadores, ingenieros y responsables políticos involucrados en la energía renovable y la tecnología del agua. Arroja luz sobre los últimos avances en sistemas fotovoltaicos y desalinización, que se ven facilitados por la IA y el ML. La revisión tiene como objetivo orientar hacia un futuro más sostenible y tecnológicamente avanzado. Integration of photovoltaic (PV) systems, desalination technologies, and Artificial Intelligence (AI) combined with Machine Learning (ML) has introduced a new era of remarkable research and innovation. This review article thoroughly examines the recent advancements in the field, focusing on the interplay between PV systems and water desalination within the framework of AI and ML applications, along with it analyses current research to identify significant patterns, obstacles, and prospects in this interdisciplinary field. Furthermore, review examines the incorporation of AI and ML methods in improving the performance of PV systems. This includes raising their efficiency, implementing predictive maintenance strategies, and enabling real-time monitoring. It also explores the transformative influence of intelligent algorithms on desalination techniques, specifically addressing concerns pertaining to energy usage, scalability, and environmental sustainability. This article provides a thorough analysis of the current literature, identifying areas where research is lacking and suggesting potential future avenues for investigation. These advancements have resulted in increased efficiency, decreased expenses, and improved sustainability of PV system. By utilizing artificial intelligence technologies, freshwater productivity can increase by 10 % and efficiency. This review offers significant and informative perspectives for researchers, engineers, and policymakers involved in renewable energy and water technology. It sheds light on the latest advancements in photovoltaic systems and desalination, which are facilitated by AI and ML. The review aims to guide towards a more sustainable and technologically advanced future. أدى دمج الأنظمة الكهروضوئية (PV) وتقنيات تحلية المياه والذكاء الاصطناعي (AI) جنبًا إلى جنب مع التعلم الآلي (ML) إلى إدخال حقبة جديدة من البحث والابتكار اللافتين للنظر. تبحث مقالة المراجعة هذه بدقة التطورات الأخيرة في هذا المجال، مع التركيز على التفاعل بين الأنظمة الكهروضوئية وتحلية المياه في إطار تطبيقات الذكاء الاصطناعي وتعلم الآلة، إلى جانب تحليل الأبحاث الحالية لتحديد الأنماط والعقبات والآفاق المهمة في هذا المجال متعدد التخصصات. علاوة على ذلك، تدرس المراجعة دمج طرق الذكاء الاصطناعي وتعلم الآلة في تحسين أداء الأنظمة الكهروضوئية. ويشمل ذلك رفع كفاءتها، وتنفيذ استراتيجيات الصيانة التنبؤية، وتمكين المراقبة في الوقت الفعلي. كما يستكشف التأثير التحويلي للخوارزميات الذكية على تقنيات تحلية المياه، ويعالج على وجه التحديد المخاوف المتعلقة باستخدام الطاقة وقابلية التوسع والاستدامة البيئية. تقدم هذه المقالة تحليلاً شاملاً للأدبيات الحالية، وتحديد المجالات التي تفتقر إلى البحث واقتراح السبل المستقبلية المحتملة للتحقيق. وقد أدت هذه التطورات إلى زيادة الكفاءة، وانخفاض النفقات، وتحسين استدامة النظام الكهروضوئي. من خلال استخدام تقنيات الذكاء الاصطناعي، يمكن أن تزيد إنتاجية المياه العذبة بنسبة 10 ٪ والكفاءة. تقدم هذه المراجعة وجهات نظر مهمة وغنية بالمعلومات للباحثين والمهندسين وواضعي السياسات المشاركين في تكنولوجيا الطاقة المتجددة والمياه. ويسلط الضوء على أحدث التطورات في الأنظمة الكهروضوئية وتحلية المياه، والتي يسهلها الذكاء الاصطناعي والتعلم الآلي. تهدف المراجعة إلى التوجيه نحو مستقبل أكثر استدامة وتقدماً من الناحية التكنولوجية.
Heliyon arrow_drop_down Yildiz Technical University - AVESISArticle . 2024Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2024.e25407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Heliyon arrow_drop_down Yildiz Technical University - AVESISArticle . 2024Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2024.e25407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2020Publisher:AIP Publishing Laxmikant D. Jathar; Kiran Shahapurkar; S. Ganesan; Vaibhav Darekar; Siddappa Patil; Vishal Chincholi;doi: 10.1063/5.0003821
Fabrication of solar still is quite costlier and time consuming process that motivates the researchers to execute mathematical and numerical simulations of solar stills to determine the yield. Software’s plays crucial role to analyze and predict the thermal behavior of solar stills. Simulation techniques are inexpensive and time saving as compared to experimental investigations. Therefore, in this article an attempt is made to present a review of the most recent numerical studies on diverse designs of solar stills and use of various softwares with its benefit. A variety of software’s are used for modeling and development of solar stills namely CFD (ANSYS-FLUENT), MATLAB, FORTRAN, and SPSS. To determine dynamic behavior of fluid and temperature distribution over solar still CFD software is used while to develop a mathematical model and to determine various parameters inside the solar still MATLAB is used. FORTRAN is similar to MATLAB used to analyze hourly changes in the parameters like change in the water temperature and distillate output. SPSS is used for handling the statistical data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0003821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0003821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Australia, Malaysia, AustraliaPublisher:Elsevier BV Manzoore Elahi M. Soudagar; Sagar Shelare; Deepali Marghade; Pramod Belkhode; Mohammad Nur‐E‐Alam; Sieh Kiong Tiong; S. Ramesh; Armin Rajabi; Harish Venu; T. M. Yunus Khan; M.A. Mujtaba; Kiran Shahapurkar; M.A. Kalam; I.M. Rizwanul Fattah;Le transport et la production d'électricité reposent historiquement sur les moteurs à combustion interne (ICE). Cependant, en raison de l'impact environnemental et de l'inefficacité, des recherches considérables ont été consacrées à l'amélioration de leurs performances. Les carburants alternatifs sont nécessaires en raison des préoccupations environnementales et de l'épuisement des stocks de carburants non renouvelables. Le biodiesel a le potentiel de réduire les émissions et d'améliorer la durabilité par rapport au carburant diesel. Plusieurs chercheurs ont examiné l'utilisation de nanofluides pour augmenter les performances du biodiesel dans les moteurs à combustion interne. En raison de leurs propriétés thermiques et physiques, les nanoparticules dans un fluide hôte améliorent la combustion et l'efficacité du moteur. Cet examen complet examine trois domaines clés pour améliorer l'efficacité de LA GLACE : le biodiesel en tant que carburant alternatif, l'application de nanofluides et l'intégration de l'intelligence artificielle (IA)/apprentissage automatique (ML). L'intégration de l'IA/ML dans le biodiesel infusé de nanoparticules offre des possibilités passionnantes pour optimiser les processus de production, améliorer les propriétés du carburant et améliorer les performances du moteur. Cet article aborde tout d'abord les avantages du biodiesel pour l'environnement et diverses difficultés liées à son utilisation. La revue explore ensuite les effets et les caractéristiques des nanofluides dans les moteurs à circuits intégrés, dans le but de connaître leur impact sur les émissions et les performances du moteur. Après cela, cette revue discute de l'utilisation des techniques AI/ML pour améliorer le processus de combustion biodiesel-nanofluide. Cet article met en lumière les efforts en cours pour rendre la technologie de LA GLACE plus respectueuse de l'environnement et économe en énergie en examinant les recherches actuelles et les modèles émergents dans ces domaines. Enfin, l'examen présente les défis et les perspectives d'avenir du domaine, ouvrant la voie à de futures recherches et améliorations. Históricamente, el transporte y la generación de energía se han basado en los motores de combustión interna (ICE). Sin embargo, debido al impacto ambiental y la ineficiencia, se ha dedicado una considerable investigación a mejorar su rendimiento. Los combustibles alternativos son necesarios debido a las preocupaciones ambientales y al agotamiento de las reservas de combustibles no renovables. El biodiésel tiene el potencial de reducir las emisiones y mejorar la sostenibilidad en comparación con el combustible diésel. Varios investigadores han examinado el uso de nanofluidos para aumentar el rendimiento del biodiésel en motores de combustión interna. Debido a sus propiedades térmicas y físicas, las nanopartículas en un fluido huésped mejoran la combustión y la eficiencia del motor. Esta revisión exhaustiva examina tres áreas clave para mejorar la eficiencia del HIELO: el biodiésel como combustible alternativo, la aplicación de nanofluidos y la integración de inteligencia artificial (IA)/aprendizaje automático (ML). La integración de AI/ML en biodiésel infundido con nanopartículas ofrece interesantes posibilidades para optimizar los procesos de producción, mejorar las propiedades del combustible y mejorar el rendimiento del motor. Este artículo analiza primero los beneficios del biodiésel en relación con el medio ambiente y las diversas dificultades asociadas con su uso. A continuación, la revisión explora los efectos y las características de los nanofluidos en los motores de CI, con el objetivo de conocer su impacto en las emisiones y el rendimiento de los motores. Después de eso, esta revisión analiza la utilización de técnicas de IA/ML para mejorar el proceso de combustión de biodiésel-nanofluido. Este artículo arroja luz sobre los esfuerzos en curso para hacer que la tecnología de HIELO sea más respetuosa con el medio ambiente y eficiente energéticamente al examinar la investigación actual y los patrones emergentes en estos campos. Finalmente, la revisión presenta los desafíos y las perspectivas futuras del campo, allanando el camino para futuras investigaciones y mejoras. Transportation and power generation have historically relied upon Internal Combustion Engines (ICEs). However, because of environmental impact and inefficiency, considerable research has been devoted to improving their performance. Alternative fuels are necessary because of environmental concerns and the depletion of non-renewable fuel stocks. Biodiesel has the potential to reduce emissions and improve sustainability when compared to diesel fuel. Several researchers have examined using nanofluids to increase biodiesel performance in internal combustion engines. Due to their thermal and physical properties, nanoparticles in a host fluid improve engine combustion and efficiency. This comprehensive review examines three key areas for improving ICE efficiency: biodiesel as an alternative fuel, application of nanofluids, and artificial intelligence (AI)/machine learning (ML) integration. The integration of AI/ML in nanoparticle-infused biodiesel offers exciting possibilities for optimizing production processes, enhancing fuel properties, and improving engine performance. This article first discusses, the benefits of biodiesel concerning the environment and various difficulties associated with its usage. The review then explores the effects and characteristics of nanofluids in IC engines, aiming to know their impact on engine emissions and performance. After that, this review discusses the utilization of AI/ML techniques in enhancing the biodiesel-nanofluid combustion process. This article sheds light on the ongoing efforts to make ICE technology more environmentally friendly and energy-efficient by examining current research and emerging patterns in these fields. Finally, the review presents the challenges and future perspectives of the field, paving the way for future research and improvement. اعتمد النقل وتوليد الطاقة تاريخيًا على محركات الاحتراق الداخلي (ICEs). ومع ذلك، بسبب التأثير البيئي وعدم الكفاءة، تم تخصيص أبحاث كبيرة لتحسين أدائها. الوقود البديل ضروري بسبب المخاوف البيئية واستنفاد مخزونات الوقود غير المتجددة. يتمتع الديزل الحيوي بالقدرة على تقليل الانبعاثات وتحسين الاستدامة عند مقارنته بوقود الديزل. قام العديد من الباحثين بفحص استخدام السوائل النانوية لزيادة أداء الديزل الحيوي في محركات الاحتراق الداخلي. نظرًا لخصائصها الحرارية والفيزيائية، تعمل الجسيمات النانوية في السائل المضيف على تحسين احتراق المحرك وكفاءته. تبحث هذه المراجعة الشاملة في ثلاثة مجالات رئيسية لتحسين كفاءة الجليد: الديزل الحيوي كوقود بديل، وتطبيق السوائل النانوية، وتكامل الذكاء الاصطناعي (AI)/التعلم الآلي (ML). يوفر دمج AI/ML في الديزل الحيوي المليء بالجسيمات النانوية إمكانيات مثيرة لتحسين عمليات الإنتاج، وتعزيز خصائص الوقود، وتحسين أداء المحرك. تناقش هذه المقالة أولاً فوائد الديزل الحيوي فيما يتعلق بالبيئة والصعوبات المختلفة المرتبطة باستخدامه. ثم تستكشف المراجعة تأثيرات وخصائص السوائل النانوية في محركات IC، بهدف معرفة تأثيرها على انبعاثات المحرك وأدائه. بعد ذلك، تناقش هذه المراجعة استخدام تقنيات الذكاء الاصطناعي/تعلم الآلة في تعزيز عملية احتراق الديزل الحيوي والسوائل النانوية. تسلط هذه المقالة الضوء على الجهود المستمرة لجعل تكنولوجيا الجليد أكثر ملاءمة للبيئة وكفاءة في استخدام الطاقة من خلال دراسة الأبحاث الحالية والأنماط الناشئة في هذه المجالات. أخيرًا، تعرض المراجعة التحديات والمنظورات المستقبلية للحقل، مما يمهد الطريق للبحث والتحسين في المستقبل.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Springer Science and Business Media LLC Manzoore Elahi M. Soudagar; Asif Afzal; Mohammad Reza Safaei; A. Muthu Manokar; Ahmed I. EL‑Seesy; M. A. Mujtaba; Olusegun David Samuel; Irfan Anjum Badruddin; Waqar Ahmed; Kiran Shahapurkar; Marjan Goodarzi;Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-10388-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-10388-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing Authors: Mohanram Parthiban; Venkatesh Chenrayan; Chandraprabhu Venkatachalam; Kiran Shahapurkar; +1 AuthorsMohanram Parthiban; Venkatesh Chenrayan; Chandraprabhu Venkatachalam; Kiran Shahapurkar; Addisu Bekele;Abstract Since the moisture present in the vegetables and fruits are initially more, they are endangered to spoil quickly. The ability of the desiccant materials to absorb moisture can be used for drying. By incorporating desiccants in the drying process, drying can also be carried out during no sunshine periods. The absorbed moisture can be desorbed by passing hot air stream through the desiccants. A cylindrical desiccant mould with varying diameters of concentric holes, comprising of vermiculite (20%), bentonite (60%), cement (10%) and calcium chloride (10%) has been prepared. The sizes of the concentric holes were made in three different diameters as 6, 12 and 18 mm. Different mass flow rates and temperatures were followed to conduct the experiment as per Box- Benhen design. The ANOVA analysis was performed to arrive the percentage of contribution of influence over the desorption. Various indicators including the percentage of error between measured and predicted responses were employed to uphold the accuracy of the proposed mathematical model. The extensive statistical study reveals that the 6 mm of hole diameter, 0.003 Kg m−2s of mass flow rate and 60 °C temperature are the optimal parameters for the solid desiccant to regenerate effectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2053-1591/ac0c51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2053-1591/ac0c51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV L. Razzaq; M.A. Mujtaba; Manzoore Elahi M. Soudagar; Waqar Ahmed; H. Fayaz; Shahid Bashir; I.M. Rizwanul Fattah; Hwai Chyuan Ong; Kiran Shahapurkar; Asif Afzal; S. Wageh; Ahmed Al-Ghamdi; Muhammad Shujaat Ali; Ahmed I. EL-Seesy;pmid: 33453625
This study investigated the engine performance and emission characteristics of biodiesel blends with combined Graphene oxide nanoplatelets (GNPs) and 10% v/v dimethyl carbonate (DMC) as fuel additives as well as analysed the tribological characteristics of those blends. 10% by volume DMC was mixed with 30% palm oil biodiesel blends with diesel. Three different concentrations (40, 80 and 120 ppm) of GNPs were added to these blends via the ultrasonication process to prepare the nanofuels. Sodium dodecyl sulphate (SDS) surfactant was added to improve the stability of these blends. GNPs were characterised using Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR), while the viscosity of nanofuels was investigated by rheometer. UV-spectrometry was used to determine the stability of these nanoplatelets. A ratio of 1:4 GNP: SDS was found to produce maximum stability in biodiesel. Performance and emissions characteristics of these nanofuels have been investigated in a four-stroke compression ignition engine. The maximum reduction in BSFC of 5.05% and the maximum BTE of 22.80% was for B30GNP40DMC10 compared to all other tested blends. A reduction in HC (25%) and CO (4.41%) were observed for B30DMC10, while a reduction in NOx of 3.65% was observed for B30GNP40DMC10. The diesel-biodiesel fuel blends with the addition of GNP exhibited a promising reduction in the average coefficient of friction 15.05%, 8.68% and 3.61% for 120, 80 and 40 ppm concentrations compared to B30. Thus, combined GNP and DMC showed excellent potential for utilisation in diesel engine operation.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111917&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111917&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 TurkeyPublisher:Elsevier BV Authors: Laxmikant D. Jathar; Keval Chandrakant Nikam; Umesh V. Awasarmol; Raviraj Gurav; +9 AuthorsLaxmikant D. Jathar; Keval Chandrakant Nikam; Umesh V. Awasarmol; Raviraj Gurav; Jitendra D. Patil; Kiran Shahapurkar; Manzoore Elahi M. Soudagar; T. M. Yunus Khan; M.A. Kalam; Anna Hnydiuk-Stefan; Ali Etem Gürel; Anh Tuan Hoang; Ümit Ağbulut;pmid: 38371991
pmc: PMC10873676
L'intégration de systèmes photovoltaïques (PV), de technologies de dessalement et d'intelligence artificielle (IA) combinée à l'apprentissage automatique (ML) a introduit une nouvelle ère de recherche et d'innovation remarquables. Cet article de synthèse examine en profondeur les progrès récents dans le domaine, en se concentrant sur l'interaction entre les systèmes photovoltaïques et le dessalement de l'eau dans le cadre des applications d'IA et de ML, tout en analysant les recherches actuelles pour identifier les modèles, les obstacles et les perspectives importants dans ce domaine interdisciplinaire. En outre, l'examen examine l'intégration des méthodes d'IA et de ML dans l'amélioration des performances des systèmes photovoltaïques. Cela comprend l'augmentation de leur efficacité, la mise en œuvre de stratégies de maintenance prédictive et la surveillance en temps réel. Il explore également l'influence transformatrice des algorithmes intelligents sur les techniques de dessalement, en abordant spécifiquement les préoccupations relatives à la consommation d'énergie, à l'évolutivité et à la durabilité environnementale. Cet article fournit une analyse approfondie de la littérature actuelle, identifiant les domaines où la recherche fait défaut et suggérant des pistes d'investigation futures potentielles. Ces progrès ont permis d'accroître l'efficacité, de réduire les dépenses et d'améliorer la durabilité du système photovoltaïque. En utilisant des technologies d'intelligence artificielle, la productivité de l'eau douce peut augmenter de 10 % et l'efficacité. Cette revue offre des perspectives significatives et informatives pour les chercheurs, les ingénieurs et les décideurs politiques impliqués dans les technologies des énergies renouvelables et de l'eau. Il met en lumière les dernières avancées en matière de systèmes photovoltaïques et de dessalement, facilitées par l'IA et le ML. L'examen vise à orienter vers un avenir plus durable et technologiquement avancé. La integración de sistemas fotovoltaicos (PV), tecnologías de desalinización e Inteligencia Artificial (IA) combinada con Machine Learning (ML) ha introducido una nueva era de investigación e innovación notables. Este artículo de revisión examina a fondo los avances recientes en el campo, centrándose en la interacción entre los sistemas fotovoltaicos y la desalinización del agua en el marco de las aplicaciones de IA y ML, junto con el análisis de la investigación actual para identificar patrones, obstáculos y perspectivas significativos en este campo interdisciplinario. Además, la revisión examina la incorporación de métodos de IA y ML para mejorar el rendimiento de los sistemas fotovoltaicos. Esto incluye aumentar su eficiencia, implementar estrategias de mantenimiento predictivo y permitir el monitoreo en tiempo real. También explora la influencia transformadora de los algoritmos inteligentes en las técnicas de desalinización, abordando específicamente las preocupaciones relacionadas con el uso de energía, la escalabilidad y la sostenibilidad ambiental. Este artículo proporciona un análisis exhaustivo de la literatura actual, identificando áreas en las que falta investigación y sugiriendo posibles vías futuras para la investigación. Estos avances han dado como resultado una mayor eficiencia, una disminución de los gastos y una mejor sostenibilidad del sistema fotovoltaico. Al utilizar tecnologías de inteligencia artificial, la productividad y la eficiencia del agua dulce pueden aumentar en un 10 %. Esta revisión ofrece perspectivas significativas e informativas para investigadores, ingenieros y responsables políticos involucrados en la energía renovable y la tecnología del agua. Arroja luz sobre los últimos avances en sistemas fotovoltaicos y desalinización, que se ven facilitados por la IA y el ML. La revisión tiene como objetivo orientar hacia un futuro más sostenible y tecnológicamente avanzado. Integration of photovoltaic (PV) systems, desalination technologies, and Artificial Intelligence (AI) combined with Machine Learning (ML) has introduced a new era of remarkable research and innovation. This review article thoroughly examines the recent advancements in the field, focusing on the interplay between PV systems and water desalination within the framework of AI and ML applications, along with it analyses current research to identify significant patterns, obstacles, and prospects in this interdisciplinary field. Furthermore, review examines the incorporation of AI and ML methods in improving the performance of PV systems. This includes raising their efficiency, implementing predictive maintenance strategies, and enabling real-time monitoring. It also explores the transformative influence of intelligent algorithms on desalination techniques, specifically addressing concerns pertaining to energy usage, scalability, and environmental sustainability. This article provides a thorough analysis of the current literature, identifying areas where research is lacking and suggesting potential future avenues for investigation. These advancements have resulted in increased efficiency, decreased expenses, and improved sustainability of PV system. By utilizing artificial intelligence technologies, freshwater productivity can increase by 10 % and efficiency. This review offers significant and informative perspectives for researchers, engineers, and policymakers involved in renewable energy and water technology. It sheds light on the latest advancements in photovoltaic systems and desalination, which are facilitated by AI and ML. The review aims to guide towards a more sustainable and technologically advanced future. أدى دمج الأنظمة الكهروضوئية (PV) وتقنيات تحلية المياه والذكاء الاصطناعي (AI) جنبًا إلى جنب مع التعلم الآلي (ML) إلى إدخال حقبة جديدة من البحث والابتكار اللافتين للنظر. تبحث مقالة المراجعة هذه بدقة التطورات الأخيرة في هذا المجال، مع التركيز على التفاعل بين الأنظمة الكهروضوئية وتحلية المياه في إطار تطبيقات الذكاء الاصطناعي وتعلم الآلة، إلى جانب تحليل الأبحاث الحالية لتحديد الأنماط والعقبات والآفاق المهمة في هذا المجال متعدد التخصصات. علاوة على ذلك، تدرس المراجعة دمج طرق الذكاء الاصطناعي وتعلم الآلة في تحسين أداء الأنظمة الكهروضوئية. ويشمل ذلك رفع كفاءتها، وتنفيذ استراتيجيات الصيانة التنبؤية، وتمكين المراقبة في الوقت الفعلي. كما يستكشف التأثير التحويلي للخوارزميات الذكية على تقنيات تحلية المياه، ويعالج على وجه التحديد المخاوف المتعلقة باستخدام الطاقة وقابلية التوسع والاستدامة البيئية. تقدم هذه المقالة تحليلاً شاملاً للأدبيات الحالية، وتحديد المجالات التي تفتقر إلى البحث واقتراح السبل المستقبلية المحتملة للتحقيق. وقد أدت هذه التطورات إلى زيادة الكفاءة، وانخفاض النفقات، وتحسين استدامة النظام الكهروضوئي. من خلال استخدام تقنيات الذكاء الاصطناعي، يمكن أن تزيد إنتاجية المياه العذبة بنسبة 10 ٪ والكفاءة. تقدم هذه المراجعة وجهات نظر مهمة وغنية بالمعلومات للباحثين والمهندسين وواضعي السياسات المشاركين في تكنولوجيا الطاقة المتجددة والمياه. ويسلط الضوء على أحدث التطورات في الأنظمة الكهروضوئية وتحلية المياه، والتي يسهلها الذكاء الاصطناعي والتعلم الآلي. تهدف المراجعة إلى التوجيه نحو مستقبل أكثر استدامة وتقدماً من الناحية التكنولوجية.
Heliyon arrow_drop_down Yildiz Technical University - AVESISArticle . 2024Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2024.e25407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Heliyon arrow_drop_down Yildiz Technical University - AVESISArticle . 2024Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2024.e25407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2020Publisher:AIP Publishing Laxmikant D. Jathar; Kiran Shahapurkar; S. Ganesan; Vaibhav Darekar; Siddappa Patil; Vishal Chincholi;doi: 10.1063/5.0003821
Fabrication of solar still is quite costlier and time consuming process that motivates the researchers to execute mathematical and numerical simulations of solar stills to determine the yield. Software’s plays crucial role to analyze and predict the thermal behavior of solar stills. Simulation techniques are inexpensive and time saving as compared to experimental investigations. Therefore, in this article an attempt is made to present a review of the most recent numerical studies on diverse designs of solar stills and use of various softwares with its benefit. A variety of software’s are used for modeling and development of solar stills namely CFD (ANSYS-FLUENT), MATLAB, FORTRAN, and SPSS. To determine dynamic behavior of fluid and temperature distribution over solar still CFD software is used while to develop a mathematical model and to determine various parameters inside the solar still MATLAB is used. FORTRAN is similar to MATLAB used to analyze hourly changes in the parameters like change in the water temperature and distillate output. SPSS is used for handling the statistical data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0003821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0003821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Australia, Malaysia, AustraliaPublisher:Elsevier BV Manzoore Elahi M. Soudagar; Sagar Shelare; Deepali Marghade; Pramod Belkhode; Mohammad Nur‐E‐Alam; Sieh Kiong Tiong; S. Ramesh; Armin Rajabi; Harish Venu; T. M. Yunus Khan; M.A. Mujtaba; Kiran Shahapurkar; M.A. Kalam; I.M. Rizwanul Fattah;Le transport et la production d'électricité reposent historiquement sur les moteurs à combustion interne (ICE). Cependant, en raison de l'impact environnemental et de l'inefficacité, des recherches considérables ont été consacrées à l'amélioration de leurs performances. Les carburants alternatifs sont nécessaires en raison des préoccupations environnementales et de l'épuisement des stocks de carburants non renouvelables. Le biodiesel a le potentiel de réduire les émissions et d'améliorer la durabilité par rapport au carburant diesel. Plusieurs chercheurs ont examiné l'utilisation de nanofluides pour augmenter les performances du biodiesel dans les moteurs à combustion interne. En raison de leurs propriétés thermiques et physiques, les nanoparticules dans un fluide hôte améliorent la combustion et l'efficacité du moteur. Cet examen complet examine trois domaines clés pour améliorer l'efficacité de LA GLACE : le biodiesel en tant que carburant alternatif, l'application de nanofluides et l'intégration de l'intelligence artificielle (IA)/apprentissage automatique (ML). L'intégration de l'IA/ML dans le biodiesel infusé de nanoparticules offre des possibilités passionnantes pour optimiser les processus de production, améliorer les propriétés du carburant et améliorer les performances du moteur. Cet article aborde tout d'abord les avantages du biodiesel pour l'environnement et diverses difficultés liées à son utilisation. La revue explore ensuite les effets et les caractéristiques des nanofluides dans les moteurs à circuits intégrés, dans le but de connaître leur impact sur les émissions et les performances du moteur. Après cela, cette revue discute de l'utilisation des techniques AI/ML pour améliorer le processus de combustion biodiesel-nanofluide. Cet article met en lumière les efforts en cours pour rendre la technologie de LA GLACE plus respectueuse de l'environnement et économe en énergie en examinant les recherches actuelles et les modèles émergents dans ces domaines. Enfin, l'examen présente les défis et les perspectives d'avenir du domaine, ouvrant la voie à de futures recherches et améliorations. Históricamente, el transporte y la generación de energía se han basado en los motores de combustión interna (ICE). Sin embargo, debido al impacto ambiental y la ineficiencia, se ha dedicado una considerable investigación a mejorar su rendimiento. Los combustibles alternativos son necesarios debido a las preocupaciones ambientales y al agotamiento de las reservas de combustibles no renovables. El biodiésel tiene el potencial de reducir las emisiones y mejorar la sostenibilidad en comparación con el combustible diésel. Varios investigadores han examinado el uso de nanofluidos para aumentar el rendimiento del biodiésel en motores de combustión interna. Debido a sus propiedades térmicas y físicas, las nanopartículas en un fluido huésped mejoran la combustión y la eficiencia del motor. Esta revisión exhaustiva examina tres áreas clave para mejorar la eficiencia del HIELO: el biodiésel como combustible alternativo, la aplicación de nanofluidos y la integración de inteligencia artificial (IA)/aprendizaje automático (ML). La integración de AI/ML en biodiésel infundido con nanopartículas ofrece interesantes posibilidades para optimizar los procesos de producción, mejorar las propiedades del combustible y mejorar el rendimiento del motor. Este artículo analiza primero los beneficios del biodiésel en relación con el medio ambiente y las diversas dificultades asociadas con su uso. A continuación, la revisión explora los efectos y las características de los nanofluidos en los motores de CI, con el objetivo de conocer su impacto en las emisiones y el rendimiento de los motores. Después de eso, esta revisión analiza la utilización de técnicas de IA/ML para mejorar el proceso de combustión de biodiésel-nanofluido. Este artículo arroja luz sobre los esfuerzos en curso para hacer que la tecnología de HIELO sea más respetuosa con el medio ambiente y eficiente energéticamente al examinar la investigación actual y los patrones emergentes en estos campos. Finalmente, la revisión presenta los desafíos y las perspectivas futuras del campo, allanando el camino para futuras investigaciones y mejoras. Transportation and power generation have historically relied upon Internal Combustion Engines (ICEs). However, because of environmental impact and inefficiency, considerable research has been devoted to improving their performance. Alternative fuels are necessary because of environmental concerns and the depletion of non-renewable fuel stocks. Biodiesel has the potential to reduce emissions and improve sustainability when compared to diesel fuel. Several researchers have examined using nanofluids to increase biodiesel performance in internal combustion engines. Due to their thermal and physical properties, nanoparticles in a host fluid improve engine combustion and efficiency. This comprehensive review examines three key areas for improving ICE efficiency: biodiesel as an alternative fuel, application of nanofluids, and artificial intelligence (AI)/machine learning (ML) integration. The integration of AI/ML in nanoparticle-infused biodiesel offers exciting possibilities for optimizing production processes, enhancing fuel properties, and improving engine performance. This article first discusses, the benefits of biodiesel concerning the environment and various difficulties associated with its usage. The review then explores the effects and characteristics of nanofluids in IC engines, aiming to know their impact on engine emissions and performance. After that, this review discusses the utilization of AI/ML techniques in enhancing the biodiesel-nanofluid combustion process. This article sheds light on the ongoing efforts to make ICE technology more environmentally friendly and energy-efficient by examining current research and emerging patterns in these fields. Finally, the review presents the challenges and future perspectives of the field, paving the way for future research and improvement. اعتمد النقل وتوليد الطاقة تاريخيًا على محركات الاحتراق الداخلي (ICEs). ومع ذلك، بسبب التأثير البيئي وعدم الكفاءة، تم تخصيص أبحاث كبيرة لتحسين أدائها. الوقود البديل ضروري بسبب المخاوف البيئية واستنفاد مخزونات الوقود غير المتجددة. يتمتع الديزل الحيوي بالقدرة على تقليل الانبعاثات وتحسين الاستدامة عند مقارنته بوقود الديزل. قام العديد من الباحثين بفحص استخدام السوائل النانوية لزيادة أداء الديزل الحيوي في محركات الاحتراق الداخلي. نظرًا لخصائصها الحرارية والفيزيائية، تعمل الجسيمات النانوية في السائل المضيف على تحسين احتراق المحرك وكفاءته. تبحث هذه المراجعة الشاملة في ثلاثة مجالات رئيسية لتحسين كفاءة الجليد: الديزل الحيوي كوقود بديل، وتطبيق السوائل النانوية، وتكامل الذكاء الاصطناعي (AI)/التعلم الآلي (ML). يوفر دمج AI/ML في الديزل الحيوي المليء بالجسيمات النانوية إمكانيات مثيرة لتحسين عمليات الإنتاج، وتعزيز خصائص الوقود، وتحسين أداء المحرك. تناقش هذه المقالة أولاً فوائد الديزل الحيوي فيما يتعلق بالبيئة والصعوبات المختلفة المرتبطة باستخدامه. ثم تستكشف المراجعة تأثيرات وخصائص السوائل النانوية في محركات IC، بهدف معرفة تأثيرها على انبعاثات المحرك وأدائه. بعد ذلك، تناقش هذه المراجعة استخدام تقنيات الذكاء الاصطناعي/تعلم الآلة في تعزيز عملية احتراق الديزل الحيوي والسوائل النانوية. تسلط هذه المقالة الضوء على الجهود المستمرة لجعل تكنولوجيا الجليد أكثر ملاءمة للبيئة وكفاءة في استخدام الطاقة من خلال دراسة الأبحاث الحالية والأنماط الناشئة في هذه المجالات. أخيرًا، تعرض المراجعة التحديات والمنظورات المستقبلية للحقل، مما يمهد الطريق للبحث والتحسين في المستقبل.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Springer Science and Business Media LLC Manzoore Elahi M. Soudagar; Asif Afzal; Mohammad Reza Safaei; A. Muthu Manokar; Ahmed I. EL‑Seesy; M. A. Mujtaba; Olusegun David Samuel; Irfan Anjum Badruddin; Waqar Ahmed; Kiran Shahapurkar; Marjan Goodarzi;Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-10388-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-10388-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing Authors: Mohanram Parthiban; Venkatesh Chenrayan; Chandraprabhu Venkatachalam; Kiran Shahapurkar; +1 AuthorsMohanram Parthiban; Venkatesh Chenrayan; Chandraprabhu Venkatachalam; Kiran Shahapurkar; Addisu Bekele;Abstract Since the moisture present in the vegetables and fruits are initially more, they are endangered to spoil quickly. The ability of the desiccant materials to absorb moisture can be used for drying. By incorporating desiccants in the drying process, drying can also be carried out during no sunshine periods. The absorbed moisture can be desorbed by passing hot air stream through the desiccants. A cylindrical desiccant mould with varying diameters of concentric holes, comprising of vermiculite (20%), bentonite (60%), cement (10%) and calcium chloride (10%) has been prepared. The sizes of the concentric holes were made in three different diameters as 6, 12 and 18 mm. Different mass flow rates and temperatures were followed to conduct the experiment as per Box- Benhen design. The ANOVA analysis was performed to arrive the percentage of contribution of influence over the desorption. Various indicators including the percentage of error between measured and predicted responses were employed to uphold the accuracy of the proposed mathematical model. The extensive statistical study reveals that the 6 mm of hole diameter, 0.003 Kg m−2s of mass flow rate and 60 °C temperature are the optimal parameters for the solid desiccant to regenerate effectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2053-1591/ac0c51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2053-1591/ac0c51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV L. Razzaq; M.A. Mujtaba; Manzoore Elahi M. Soudagar; Waqar Ahmed; H. Fayaz; Shahid Bashir; I.M. Rizwanul Fattah; Hwai Chyuan Ong; Kiran Shahapurkar; Asif Afzal; S. Wageh; Ahmed Al-Ghamdi; Muhammad Shujaat Ali; Ahmed I. EL-Seesy;pmid: 33453625
This study investigated the engine performance and emission characteristics of biodiesel blends with combined Graphene oxide nanoplatelets (GNPs) and 10% v/v dimethyl carbonate (DMC) as fuel additives as well as analysed the tribological characteristics of those blends. 10% by volume DMC was mixed with 30% palm oil biodiesel blends with diesel. Three different concentrations (40, 80 and 120 ppm) of GNPs were added to these blends via the ultrasonication process to prepare the nanofuels. Sodium dodecyl sulphate (SDS) surfactant was added to improve the stability of these blends. GNPs were characterised using Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR), while the viscosity of nanofuels was investigated by rheometer. UV-spectrometry was used to determine the stability of these nanoplatelets. A ratio of 1:4 GNP: SDS was found to produce maximum stability in biodiesel. Performance and emissions characteristics of these nanofuels have been investigated in a four-stroke compression ignition engine. The maximum reduction in BSFC of 5.05% and the maximum BTE of 22.80% was for B30GNP40DMC10 compared to all other tested blends. A reduction in HC (25%) and CO (4.41%) were observed for B30DMC10, while a reduction in NOx of 3.65% was observed for B30GNP40DMC10. The diesel-biodiesel fuel blends with the addition of GNP exhibited a promising reduction in the average coefficient of friction 15.05%, 8.68% and 3.61% for 120, 80 and 40 ppm concentrations compared to B30. Thus, combined GNP and DMC showed excellent potential for utilisation in diesel engine operation.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111917&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2020.111917&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu