- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Funded by:MIURMIURFelipe Piancó; Leo Moraes; Igor dos Prazeres; Antônio Guilherme Garcia Lima; João Gabriel Bessa; Leonardo Micheli; Eduardo Fernández; Florencia Almonacid;handle: 11573/1659660
Hybrid renewable systems increase electricity production by reducing the randomness of sources without greenhouse gas emissions. Literature indicates that further research is still required for large systems connected to the grid. The energy storage capability of hydroelectric plants provides an opportunity to develop new renewable energy generation. This work presents the results of a hybrid preliminary design between an existing hydropower plant (HPP) in Brazil, Santa Branca, and a simulated floating photovoltaic plant (FPV), occupying only 2.8% of reservoir's surface. The study analyzed 20 years of HPP historical data, the methodology proposed the injection of the FPV full power into the system during daytime and the HPP adjusting the production. As this process changed the HPP generation profile, operational limits such as reservoir level needed to be verified. In the period, while HPP generated about 4 TWh, the FPV could add 2 TWh without significantly changing the daily generation of HPP. This increase of 50% in production was possible since there was space available in the reservoir to store water during the day and use it during the night, working as a free virtual battery for the FPV. A 50% increase of the grid connection capacity factor was also observed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.10.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.10.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Alexandre Moreira; Felipe Piancó; Bruno Fanzeres; Alexandre Street; Ruiwei Jiang; Chaoyue Zhao; Miguel Heleno;Wildfires can severely damage electricity grids leading to long periods of power interruption. Climate change will exacerbate this threat by increasing the frequency of dry climate conditions. Under these climate conditions, human-related actions that initiate wildfires should be avoided, including those induced by power systems operation. In this paper, we propose a novel optimization model that is capable of determining appropriate network topology changes (via switching actions) to alleviate the levels of power flows through vulnerable parts of the grid so as to decrease the probability of wildfire ignition. Within this framework, the proposed model captures the relationship between failure probabilities and line-flow decisions by explicitly considering the former as a function of the latter. The resulting formulation is a two-stage model with endogenous decision-dependent probabilities, where the first stage determines the optimal switching actions and the second stage evaluates the worst-case expected operation cost. We propose an exact iterative method to deal with this intricate problem and the methodology is illustrated with a 54-bus and a 138-bus distribution system.
https://dx.doi.org/1... arrow_drop_down eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3353593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3353593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Funded by:MIURMIURFelipe Piancó; Leo Moraes; Igor dos Prazeres; Antônio Guilherme Garcia Lima; João Gabriel Bessa; Leonardo Micheli; Eduardo Fernández; Florencia Almonacid;handle: 11573/1659660
Hybrid renewable systems increase electricity production by reducing the randomness of sources without greenhouse gas emissions. Literature indicates that further research is still required for large systems connected to the grid. The energy storage capability of hydroelectric plants provides an opportunity to develop new renewable energy generation. This work presents the results of a hybrid preliminary design between an existing hydropower plant (HPP) in Brazil, Santa Branca, and a simulated floating photovoltaic plant (FPV), occupying only 2.8% of reservoir's surface. The study analyzed 20 years of HPP historical data, the methodology proposed the injection of the FPV full power into the system during daytime and the HPP adjusting the production. As this process changed the HPP generation profile, operational limits such as reservoir level needed to be verified. In the period, while HPP generated about 4 TWh, the FPV could add 2 TWh without significantly changing the daily generation of HPP. This increase of 50% in production was possible since there was space available in the reservoir to store water during the day and use it during the night, working as a free virtual battery for the FPV. A 50% increase of the grid connection capacity factor was also observed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.10.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.10.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Alexandre Moreira; Felipe Piancó; Bruno Fanzeres; Alexandre Street; Ruiwei Jiang; Chaoyue Zhao; Miguel Heleno;Wildfires can severely damage electricity grids leading to long periods of power interruption. Climate change will exacerbate this threat by increasing the frequency of dry climate conditions. Under these climate conditions, human-related actions that initiate wildfires should be avoided, including those induced by power systems operation. In this paper, we propose a novel optimization model that is capable of determining appropriate network topology changes (via switching actions) to alleviate the levels of power flows through vulnerable parts of the grid so as to decrease the probability of wildfire ignition. Within this framework, the proposed model captures the relationship between failure probabilities and line-flow decisions by explicitly considering the former as a function of the latter. The resulting formulation is a two-stage model with endogenous decision-dependent probabilities, where the first stage determines the optimal switching actions and the second stage evaluates the worst-case expected operation cost. We propose an exact iterative method to deal with this intricate problem and the methodology is illustrated with a 54-bus and a 138-bus distribution system.
https://dx.doi.org/1... arrow_drop_down eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3353593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3353593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu