
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Distribution System Operation Amidst Wildfire-Prone Climate Conditions Under Decision-Dependent Line Availability Uncertainty

Wildfires can severely damage electricity grids leading to long periods of power interruption. Climate change will exacerbate this threat by increasing the frequency of dry climate conditions. Under these climate conditions, human-related actions that initiate wildfires should be avoided, including those induced by power systems operation. In this paper, we propose a novel optimization model that is capable of determining appropriate network topology changes (via switching actions) to alleviate the levels of power flows through vulnerable parts of the grid so as to decrease the probability of wildfire ignition. Within this framework, the proposed model captures the relationship between failure probabilities and line-flow decisions by explicitly considering the former as a function of the latter. The resulting formulation is a two-stage model with endogenous decision-dependent probabilities, where the first stage determines the optimal switching actions and the second stage evaluates the worst-case expected operation cost. We propose an exact iterative method to deal with this intricate problem and the methodology is illustrated with a 54-bus and a 138-bus distribution system.
- University of Michigan–Flint United States
- Pontifical Catholic University of Rio de Janeiro Brazil
- Pontifical Catholic University of Rio de Janeiro Brazil
- University of California System United States
- Lawrence Berkeley National Laboratory United States
ambiguity aversion, Energy, wildfire in distribution systems, line switching, Decision-dependent uncertainty, Climate Action, Engineering, Optimization and Control (math.OC), Electrical engineering, FOS: Mathematics, distribution system operation, Electrical and Electronic Engineering, Mathematics - Optimization and Control, Electrical Engineering
ambiguity aversion, Energy, wildfire in distribution systems, line switching, Decision-dependent uncertainty, Climate Action, Engineering, Optimization and Control (math.OC), Electrical engineering, FOS: Mathematics, distribution system operation, Electrical and Electronic Engineering, Mathematics - Optimization and Control, Electrical Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
