- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV Authors: Sushil Gupta; R.A. Creelman; Rajender Gupta; Terry Wall;A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600°C. The temperatures corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-3820(97)00090-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 71 citations 71 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-3820(97)00090-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 AustraliaPublisher:Elsevier BV Khare, S. P.; Wall, T. F.; Farida, A. Z.; Liu, Y.; Moghtaderi, B.; Gupta, R. P.;handle: 1959.13/43194
Abstract Combustion tests were undertaken in a vertical pilot-scale furnace (1.2 MWt) at the IHI test facility in Aioi, Japan, to compare the performance of an air fired swirl burner retrofitted to oxy fired pf coal combustion with the oxy fired feed conditions established to match the furnace heat transfer for the air fired case. A turn down test at a reduced load was also conducted to study the impact on flame stability and furnace performance. Experimental results include gas temperature measurements using pyrometry to infer the ignition location of the flames, flue gas composition analysis, and residence time and carbon burnout. Theoretical computational fluid dynamics (CFD) modelling studies using the Fluent 6.2 code were made to infer mechanisms for flame ignition changes. Previous research has identified that differences in the gas compositions of air and oxy systems increase particle ignition times and reduce flame propagation velocity in laminar systems. The current study also suggests changes in jet aerodynamics, due to burner primary and secondary velocity differences (and hence the momentum flux ratio of the flows) also influence flame shape and type. For the oxy fuel retrofit considered, the higher momentum flux of the primary stream of the oxy-fuel burner causes the predicted ignition to be delayed and occur further distant from the burner nozzle, with the difference being accentuated at low load. However, the study was limited to experimental flames being all Type-0 (low swirl with no internal recirculation), and therefore future work consider higher swirl flames (with internal recirculation) more common in industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2007.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 125 citations 125 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2007.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV S. Miyamae; Y. Tsumita; I. Kajigaya; Terry Wall; Rajender Gupta;Abstract The nature of mineral matter in coal determines its transformation into ash during combustion and the nature of resulting ash (e.g. chemical composition and particle size distribution), and subsequently influences the ash deposition behaviour. The behaviour of mineral matter is primarily influenced by two parameters: the mineral grain size, and whether the mineral grains are within the coal matrix or not. Computer-controlled scanning electron microscopy (CCSEM) of coal provides such information on mineral matter in coal. CCSEM data are, therefore, processed to predict the fouling and slagging characteristics of several coals. The fraction of basic oxides in each mineral grain may be considered as an indicator of stickiness of the corresponding ash particle due to formation of low melting compounds. The cumulative mass fraction of mineral grains with certain basic oxides or viscosity of resulting ash particles from included and excluded minerals are proposed as alternative indices for ash deposition. The excluded mineral matter is in equilibrium with the combustion flue gases at the gas temperatures, whereas the included minerals are in equilibrium with the atmosphere within char at the burning char particle temperature. It is predicted from thermodynamic calculations based on this understanding that almost all the evaporation is either from the included mineral matter or from the atomically dispersed minerals in coal. This is due to the high temperature and reducing atmosphere inside the char particle. The release of the evaporated species is controlled by diffusion through the burning char particle and, therefore, may be estimated theoretically. The amount of mineral matter that is vaporized may then be related to fouling, whereas the melt phase present on the surface of large ash particles may be related to slagging. The theoretical speculations on the physical character of ash derived from these indices are compared with the experimental data obtained from combustion of coals in a drop-tube furnace.
Progress in Energy a... arrow_drop_down Progress in Energy and Combustion ScienceArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-1285(98)00009-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert Progress in Energy a... arrow_drop_down Progress in Energy and Combustion ScienceArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-1285(98)00009-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 AustraliaPublisher:Elsevier BV Authors: Cetin, Emre; Gupta, Rajender; Moghtaderi, Behdad;handle: 1959.13/25175
The knowledge of biomass char gasification kinetics has considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressure. The char gasification kinetics themselves are influenced by char structure. In this study, the effects of pyrolysis pressure and heating rate on the char structure were investigated using scanning electron microscopy (SEM) analysis, digital cinematography, and surface area analysis. Char samples were prepared at pressures between 1 and 20 bar, temperatures ranging from 800 to 1000 °C, and heating rates between 20 and 500 °C/s. Our results indicate that pyrolysis conditions have a notable impact on the biomass char morphology. Pyrolysis pressure, in particular, was found to influence the size and the shape of char particles while high heating rates led to plastic deformation of particles (i.e. melting) resulting in smooth surfaces and large cavities. The global gasification reactivities of char samples were also determined using thermogravimetric analysis (TGA) technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2004.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 199 citations 199 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2004.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:American Chemical Society (ACS) Yue Yang; Zhen Li; Tiantian Cao; Teresa M. Bisson; Shengming Xu; Zhenghe Xu; Zhenghe Xu; Zhenghe Xu; Yong Xiong; Rajender Gupta;pmid: 28823171
Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg0 by the Ag-Hg0 amalgamation mechanism. An Hg0 capture capacity as high as 13.2 mg·g-1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg0 removal efficiency as high as 91.6% with a Hg0 capture capacity of 457.3 μg·g-1. More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg0 capture from coal-fired flue gases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b01701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b01701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Ital Publication Authors: Anal Ranjan Sengupta; Rajender Gupta; Agnimitra Biswas;In India, Silk industry plays an important part in textile industry. Muga silk, the golden yellow silk is quite unique to Assam, North-east India where its production is regarded as an important tool for economic development. But, outdated manufacturing technology is followed during the silk production in Assam. The existing cooking process of silk cocoons consists of boiling of silk cocoons in a stainless steel vessel along with water and soda in an open fireplace which is highly energy inefficient. Therefore, two modified systems have been designed; one having cylindrical boiling chamber (vessel) and the other having spherical boiling chamber (vessel). Both the chambers are having a cocoon heating chamber associated with them for cooking and drying of silk cocoons simultaneously. These designs are further classified into two types of designs based on channel and nozzle type combustion chambers. Therefore, the main objective of this paper is to improve the existing designs to maximize the utilization of heat carried by the combustion gases. These modified systems are analysed by using Computational Fluid Dynamics (CFD) selecting standard k–є model. From the analysis, it is seen that these new systems having nozzle type combustion chambers are more efficient than the systems having cylindrical combustion chambers and if these systems are used in silk production, it will be very beneficial for the silk industry as well as for our society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.28991/esj-2019-01191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.28991/esj-2019-01191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Shayan Karimipour; Ebrahim Azimi; Jozef Szymanski; Petr A. Nikrityuk; Rajender Gupta;Abstract Air dense medium fluidized bed technique has been proposed as a viable technique for dry coal beneficiation with acceptable separation efficiency. In the current work, CFD simulation has been used to provide deeper understanding of the bed hydrodynamics in this system. The simulation results have been compared with the experimental data from sedimentation or flotation of 3.675 mm coal particles in a bed of Geldart group B silica sand particles (390 μm, 2600 kg/m3). The superficial velocity has been adjusted (between minimum fluidization and minimum bubbling) to keep the bed in the particulate regime. The results of several 2D and 3D Eulerian multiphase CFD models have been evaluated and compared with the experimental data of bed expansion, bubble pattern and frequency, and coal particles density classes. It was found that the modification of the coefficients of Syamlal-O’Brien drag model to 0.52 and 5.30369 and solid–solid restitution coefficient of 0.9 would enhance model predictions for both sand fluidized bed and coal segregation compared to the experimental data. Comparison of the simulation results with experiments showed that 3D simulation model performed 29.1% better than similar 2D models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.02.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.02.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Raymond J. Spiteri; Shayan Karimipour; Rajender Gupta; Regan Gerspacher;Abstract A series of experiments has been designed and conducted to study the effect of three operating factors, namely, coal feedrate, coal particle size, and steam/O 2 ratio, and their interactions on the quality of syngas produced from fluidized bed gasification of lignite coal. The quality of syngas is evaluated based on five indices including carbon conversion, H 2 /CO ratio, CH 4 /H 2 ratio, gas yield, and gasification efficiency. The design of experiment tool based on the response surface methodology (RSM), which is believed to be more accurate than the common one-factor-at-a-time approach, is used to facilitate the comparison of the effect of all factors. The factors are tested in the ranges of 0.036–0.063 g/s, 70–500 μm, and 0.5–1.0, for coal feedrate, coal particle size, and steam/O 2 ratio, respectively. The carbon conversion, H 2 /CO ratio, CH 4 /H 2 ratio, gas yield, and gasification efficiency are found to range from 91% to 97%, 0.776 to 1.268, 0.0517 to 0.0702, 3.4 to 3.7 m 3 gas/kg coal, and 56% to 67%, respectively. The effects of individual operating factors and their interactions on each syngas quality index are discussed using RSM tools. A set of operating conditions to achieve syngas with a desired quality for different applications is also proposed by optimization of the response surface of each index.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 AustraliaPublisher:Elsevier BV Authors: Tang, Liangguang; Gupta, Rajender; Sheng, Changdong; Wall, Terry Fitzgerald;handle: 1959.13/24625
Abstract Coal is a heterogeneous substance and its heterogeneity is identified and characterized by variation in reflectance. The main objective of this paper is to characterize the heterogeneity of char and to correlate it with the coal reflectogram, which accounts for both rank and maceral composition effects. Chars from two density fractions in a set of coals were obtained in a Drop Tube Furnace (DTF) at 1400 °C in N 2 environment. The chars were examined under a Scanning Electron Microscope (SEM) and the morphology information was obtained from the image-processing technique. The average porosity of char changes systematically with the FMR of its parent coals (defined as the summation of each reflectance multiplied with its frequency). The char porosity increased with an increase in FMR up to a critical value around 98. With further increase in FMR, the corresponding char becomes dense. The char macro porosity distribution was found to be related to the coal reflectogram. In general, the char porosity distribution shows two peaks, which corresponds to the inertinite and vitrinite peaks in reflectogram. The intensity depends on the maceral content. The relationship between the char porosity and coal reflectance for this set of sample has been found, which is strongly dependent on the coal rank. However, these findings cannot be applied to coals with a strong maceral association (microlithotype).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2004.09.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2004.09.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Funded by:NSERCNSERCRajender Gupta; Lushi Sun; Wei Li; Wei Li; Deepak Pudasainee; Ben Wang; Wu Yang; Wu Yang;handle: 1959.13/1437716
Abstract This paper systematically reviews the PM sampling and measurement methods, formation mechanisms, distribution, inorganic composition and the factors influencing PM emission during combustion of coal/biomass/MSW. Particle sampling and measurement methods are developing rapidly utilizing various techniques, however, the direct sampling techniques for particle in the high temperature flue gas is still lacking. Particle is generated by a series of physical processes (evaporation, condensation, fragmentation etc.) and chemical reaction processes of inorganic mineral components and organically bound metal compounds in the solid fuels. The available literature data shows that the emission of coarse particles from coal combustion is generally higher than that from biomass, while the emission of ultrafine and fine particle from biomass combustion is higher than that of coal. Particle emission is related to a variety of influencing factors such as solid fuels particle size, inherent ash content, mineral properties, binding form of inorganic elements, combustion parameters (temperature, pressure, residence time, oxygen concentration etc.) and ash chemical composition. The content of Na, K, S, Cl, Si and Al plays a decisive role in PM10 emissions, the (Na2O + K2O)/(SiO2 + Al2O3) ratio of ash can be used as an index to predict the yield of PM0.3 in coal and biomass combustion.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2020.106657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2020.106657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV Authors: Sushil Gupta; R.A. Creelman; Rajender Gupta; Terry Wall;A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600°C. The temperatures corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-3820(97)00090-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 71 citations 71 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-3820(97)00090-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 AustraliaPublisher:Elsevier BV Khare, S. P.; Wall, T. F.; Farida, A. Z.; Liu, Y.; Moghtaderi, B.; Gupta, R. P.;handle: 1959.13/43194
Abstract Combustion tests were undertaken in a vertical pilot-scale furnace (1.2 MWt) at the IHI test facility in Aioi, Japan, to compare the performance of an air fired swirl burner retrofitted to oxy fired pf coal combustion with the oxy fired feed conditions established to match the furnace heat transfer for the air fired case. A turn down test at a reduced load was also conducted to study the impact on flame stability and furnace performance. Experimental results include gas temperature measurements using pyrometry to infer the ignition location of the flames, flue gas composition analysis, and residence time and carbon burnout. Theoretical computational fluid dynamics (CFD) modelling studies using the Fluent 6.2 code were made to infer mechanisms for flame ignition changes. Previous research has identified that differences in the gas compositions of air and oxy systems increase particle ignition times and reduce flame propagation velocity in laminar systems. The current study also suggests changes in jet aerodynamics, due to burner primary and secondary velocity differences (and hence the momentum flux ratio of the flows) also influence flame shape and type. For the oxy fuel retrofit considered, the higher momentum flux of the primary stream of the oxy-fuel burner causes the predicted ignition to be delayed and occur further distant from the burner nozzle, with the difference being accentuated at low load. However, the study was limited to experimental flames being all Type-0 (low swirl with no internal recirculation), and therefore future work consider higher swirl flames (with internal recirculation) more common in industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2007.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 125 citations 125 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2007.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV S. Miyamae; Y. Tsumita; I. Kajigaya; Terry Wall; Rajender Gupta;Abstract The nature of mineral matter in coal determines its transformation into ash during combustion and the nature of resulting ash (e.g. chemical composition and particle size distribution), and subsequently influences the ash deposition behaviour. The behaviour of mineral matter is primarily influenced by two parameters: the mineral grain size, and whether the mineral grains are within the coal matrix or not. Computer-controlled scanning electron microscopy (CCSEM) of coal provides such information on mineral matter in coal. CCSEM data are, therefore, processed to predict the fouling and slagging characteristics of several coals. The fraction of basic oxides in each mineral grain may be considered as an indicator of stickiness of the corresponding ash particle due to formation of low melting compounds. The cumulative mass fraction of mineral grains with certain basic oxides or viscosity of resulting ash particles from included and excluded minerals are proposed as alternative indices for ash deposition. The excluded mineral matter is in equilibrium with the combustion flue gases at the gas temperatures, whereas the included minerals are in equilibrium with the atmosphere within char at the burning char particle temperature. It is predicted from thermodynamic calculations based on this understanding that almost all the evaporation is either from the included mineral matter or from the atomically dispersed minerals in coal. This is due to the high temperature and reducing atmosphere inside the char particle. The release of the evaporated species is controlled by diffusion through the burning char particle and, therefore, may be estimated theoretically. The amount of mineral matter that is vaporized may then be related to fouling, whereas the melt phase present on the surface of large ash particles may be related to slagging. The theoretical speculations on the physical character of ash derived from these indices are compared with the experimental data obtained from combustion of coals in a drop-tube furnace.
Progress in Energy a... arrow_drop_down Progress in Energy and Combustion ScienceArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-1285(98)00009-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert Progress in Energy a... arrow_drop_down Progress in Energy and Combustion ScienceArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-1285(98)00009-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 AustraliaPublisher:Elsevier BV Authors: Cetin, Emre; Gupta, Rajender; Moghtaderi, Behdad;handle: 1959.13/25175
The knowledge of biomass char gasification kinetics has considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressure. The char gasification kinetics themselves are influenced by char structure. In this study, the effects of pyrolysis pressure and heating rate on the char structure were investigated using scanning electron microscopy (SEM) analysis, digital cinematography, and surface area analysis. Char samples were prepared at pressures between 1 and 20 bar, temperatures ranging from 800 to 1000 °C, and heating rates between 20 and 500 °C/s. Our results indicate that pyrolysis conditions have a notable impact on the biomass char morphology. Pyrolysis pressure, in particular, was found to influence the size and the shape of char particles while high heating rates led to plastic deformation of particles (i.e. melting) resulting in smooth surfaces and large cavities. The global gasification reactivities of char samples were also determined using thermogravimetric analysis (TGA) technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2004.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 199 citations 199 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2004.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:American Chemical Society (ACS) Yue Yang; Zhen Li; Tiantian Cao; Teresa M. Bisson; Shengming Xu; Zhenghe Xu; Zhenghe Xu; Zhenghe Xu; Yong Xiong; Rajender Gupta;pmid: 28823171
Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg0 by the Ag-Hg0 amalgamation mechanism. An Hg0 capture capacity as high as 13.2 mg·g-1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg0 removal efficiency as high as 91.6% with a Hg0 capture capacity of 457.3 μg·g-1. More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg0 capture from coal-fired flue gases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b01701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b01701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Ital Publication Authors: Anal Ranjan Sengupta; Rajender Gupta; Agnimitra Biswas;In India, Silk industry plays an important part in textile industry. Muga silk, the golden yellow silk is quite unique to Assam, North-east India where its production is regarded as an important tool for economic development. But, outdated manufacturing technology is followed during the silk production in Assam. The existing cooking process of silk cocoons consists of boiling of silk cocoons in a stainless steel vessel along with water and soda in an open fireplace which is highly energy inefficient. Therefore, two modified systems have been designed; one having cylindrical boiling chamber (vessel) and the other having spherical boiling chamber (vessel). Both the chambers are having a cocoon heating chamber associated with them for cooking and drying of silk cocoons simultaneously. These designs are further classified into two types of designs based on channel and nozzle type combustion chambers. Therefore, the main objective of this paper is to improve the existing designs to maximize the utilization of heat carried by the combustion gases. These modified systems are analysed by using Computational Fluid Dynamics (CFD) selecting standard k–є model. From the analysis, it is seen that these new systems having nozzle type combustion chambers are more efficient than the systems having cylindrical combustion chambers and if these systems are used in silk production, it will be very beneficial for the silk industry as well as for our society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.28991/esj-2019-01191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.28991/esj-2019-01191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Shayan Karimipour; Ebrahim Azimi; Jozef Szymanski; Petr A. Nikrityuk; Rajender Gupta;Abstract Air dense medium fluidized bed technique has been proposed as a viable technique for dry coal beneficiation with acceptable separation efficiency. In the current work, CFD simulation has been used to provide deeper understanding of the bed hydrodynamics in this system. The simulation results have been compared with the experimental data from sedimentation or flotation of 3.675 mm coal particles in a bed of Geldart group B silica sand particles (390 μm, 2600 kg/m3). The superficial velocity has been adjusted (between minimum fluidization and minimum bubbling) to keep the bed in the particulate regime. The results of several 2D and 3D Eulerian multiphase CFD models have been evaluated and compared with the experimental data of bed expansion, bubble pattern and frequency, and coal particles density classes. It was found that the modification of the coefficients of Syamlal-O’Brien drag model to 0.52 and 5.30369 and solid–solid restitution coefficient of 0.9 would enhance model predictions for both sand fluidized bed and coal segregation compared to the experimental data. Comparison of the simulation results with experiments showed that 3D simulation model performed 29.1% better than similar 2D models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.02.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.02.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Raymond J. Spiteri; Shayan Karimipour; Rajender Gupta; Regan Gerspacher;Abstract A series of experiments has been designed and conducted to study the effect of three operating factors, namely, coal feedrate, coal particle size, and steam/O 2 ratio, and their interactions on the quality of syngas produced from fluidized bed gasification of lignite coal. The quality of syngas is evaluated based on five indices including carbon conversion, H 2 /CO ratio, CH 4 /H 2 ratio, gas yield, and gasification efficiency. The design of experiment tool based on the response surface methodology (RSM), which is believed to be more accurate than the common one-factor-at-a-time approach, is used to facilitate the comparison of the effect of all factors. The factors are tested in the ranges of 0.036–0.063 g/s, 70–500 μm, and 0.5–1.0, for coal feedrate, coal particle size, and steam/O 2 ratio, respectively. The carbon conversion, H 2 /CO ratio, CH 4 /H 2 ratio, gas yield, and gasification efficiency are found to range from 91% to 97%, 0.776 to 1.268, 0.0517 to 0.0702, 3.4 to 3.7 m 3 gas/kg coal, and 56% to 67%, respectively. The effects of individual operating factors and their interactions on each syngas quality index are discussed using RSM tools. A set of operating conditions to achieve syngas with a desired quality for different applications is also proposed by optimization of the response surface of each index.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 AustraliaPublisher:Elsevier BV Authors: Tang, Liangguang; Gupta, Rajender; Sheng, Changdong; Wall, Terry Fitzgerald;handle: 1959.13/24625
Abstract Coal is a heterogeneous substance and its heterogeneity is identified and characterized by variation in reflectance. The main objective of this paper is to characterize the heterogeneity of char and to correlate it with the coal reflectogram, which accounts for both rank and maceral composition effects. Chars from two density fractions in a set of coals were obtained in a Drop Tube Furnace (DTF) at 1400 °C in N 2 environment. The chars were examined under a Scanning Electron Microscope (SEM) and the morphology information was obtained from the image-processing technique. The average porosity of char changes systematically with the FMR of its parent coals (defined as the summation of each reflectance multiplied with its frequency). The char porosity increased with an increase in FMR up to a critical value around 98. With further increase in FMR, the corresponding char becomes dense. The char macro porosity distribution was found to be related to the coal reflectogram. In general, the char porosity distribution shows two peaks, which corresponds to the inertinite and vitrinite peaks in reflectogram. The intensity depends on the maceral content. The relationship between the char porosity and coal reflectance for this set of sample has been found, which is strongly dependent on the coal rank. However, these findings cannot be applied to coals with a strong maceral association (microlithotype).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2004.09.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2004.09.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Funded by:NSERCNSERCRajender Gupta; Lushi Sun; Wei Li; Wei Li; Deepak Pudasainee; Ben Wang; Wu Yang; Wu Yang;handle: 1959.13/1437716
Abstract This paper systematically reviews the PM sampling and measurement methods, formation mechanisms, distribution, inorganic composition and the factors influencing PM emission during combustion of coal/biomass/MSW. Particle sampling and measurement methods are developing rapidly utilizing various techniques, however, the direct sampling techniques for particle in the high temperature flue gas is still lacking. Particle is generated by a series of physical processes (evaporation, condensation, fragmentation etc.) and chemical reaction processes of inorganic mineral components and organically bound metal compounds in the solid fuels. The available literature data shows that the emission of coarse particles from coal combustion is generally higher than that from biomass, while the emission of ultrafine and fine particle from biomass combustion is higher than that of coal. Particle emission is related to a variety of influencing factors such as solid fuels particle size, inherent ash content, mineral properties, binding form of inorganic elements, combustion parameters (temperature, pressure, residence time, oxygen concentration etc.) and ash chemical composition. The content of Na, K, S, Cl, Si and Al plays a decisive role in PM10 emissions, the (Na2O + K2O)/(SiO2 + Al2O3) ratio of ash can be used as an index to predict the yield of PM0.3 in coal and biomass combustion.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2020.106657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2020.106657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu