- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Elizabeth M. Wolkovich; Elizabeth M. Wolkovich; D. M. Buonaiuto; Ailene K. Ettinger; +3 AuthorsElizabeth M. Wolkovich; Elizabeth M. Wolkovich; D. M. Buonaiuto; Ailene K. Ettinger; Ailene K. Ettinger; Catherine J. Chamberlain; Ignacio Morales-Castilla;doi: 10.1111/nph.17172
pmid: 33421152
SummaryClimate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages (‘experienced photoperiod’). As photoperiod is a common trigger of seasonal biological responses – affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod – shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early‐season (‘spring’) events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio‐temporal shifts from climate change.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Elizabeth M. Wolkovich; Elizabeth M. Wolkovich; D. M. Buonaiuto; Ailene K. Ettinger; +3 AuthorsElizabeth M. Wolkovich; Elizabeth M. Wolkovich; D. M. Buonaiuto; Ailene K. Ettinger; Ailene K. Ettinger; Catherine J. Chamberlain; Ignacio Morales-Castilla;doi: 10.1111/nph.17172
pmid: 33421152
SummaryClimate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages (‘experienced photoperiod’). As photoperiod is a common trigger of seasonal biological responses – affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod – shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early‐season (‘spring’) events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio‐temporal shifts from climate change.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Cold Spring Harbor Laboratory Funded by:NSERCNSERCE. M. Wolkovich; J. Auerbach; C. J. Chamberlain; D. M. Buonaiuto; A. K. Ettinger; I. Morales‐Castilla; A. Gelman;pmid: 34355482
AbstractTemperature sensitivity—the magnitude of a biological response per °C—is a fundamental concept across scientific disciplines, especially biology, where temperature determines the rate of many plant, animal and ecosystem processes. Recently, a growing body of literature in global change biology has found temperature sensitivities decline as temperatures rise (Fuet al., 2015; Güsewell et al., 2017; Piao et al., 2017; Chen et al., 2019; Dai et al., 2019). Such observations have been used to suggest climate change is reshaping biological processes, with major implications for forecasts of future change. Here we present a simple alternative explanation for observed declining sensitivities: the use of linear models to estimate non-linear temperature responses. We show how linear estimates of sensitivities will appear to decline with warming for events that occur after a cumulative thermal threshold is met—a common model for many biological events. Corrections for the non-linearity of temperature response in simulated data and long-term phenological data from Europe remove the apparent decline. Our results show that rising temperatures combined with linear estimates based on calendar time produce observations of declining sensitivity—without any shift in the underlying biology. Current methods may thus undermine efforts to identify when and how warming will reshape biological processes.Significance statementRecently a growing body of literature has observed declining temperature sensitivities of plant leafout and other events with higher temperatures. Such results suggest that climate change is already reshaping fundamental biological processes. These temperature sensitivities are often estimated as the magnitude of a biological response per °C from linear regression. The underlying model for many events—that a critical threshold of warmth must be reached to trigger the event—however, is non-linear. We show that this mismatch between the statistical and biological models can produce the illusion of declining sensitivities with warming using current methods. We suggest simple alternative approaches that can better identify when and how warming will reshape biological processes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.01.12.426288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.01.12.426288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Cold Spring Harbor Laboratory Funded by:NSERCNSERCE. M. Wolkovich; J. Auerbach; C. J. Chamberlain; D. M. Buonaiuto; A. K. Ettinger; I. Morales‐Castilla; A. Gelman;pmid: 34355482
AbstractTemperature sensitivity—the magnitude of a biological response per °C—is a fundamental concept across scientific disciplines, especially biology, where temperature determines the rate of many plant, animal and ecosystem processes. Recently, a growing body of literature in global change biology has found temperature sensitivities decline as temperatures rise (Fuet al., 2015; Güsewell et al., 2017; Piao et al., 2017; Chen et al., 2019; Dai et al., 2019). Such observations have been used to suggest climate change is reshaping biological processes, with major implications for forecasts of future change. Here we present a simple alternative explanation for observed declining sensitivities: the use of linear models to estimate non-linear temperature responses. We show how linear estimates of sensitivities will appear to decline with warming for events that occur after a cumulative thermal threshold is met—a common model for many biological events. Corrections for the non-linearity of temperature response in simulated data and long-term phenological data from Europe remove the apparent decline. Our results show that rising temperatures combined with linear estimates based on calendar time produce observations of declining sensitivity—without any shift in the underlying biology. Current methods may thus undermine efforts to identify when and how warming will reshape biological processes.Significance statementRecently a growing body of literature has observed declining temperature sensitivities of plant leafout and other events with higher temperatures. Such results suggest that climate change is already reshaping fundamental biological processes. These temperature sensitivities are often estimated as the magnitude of a biological response per °C from linear regression. The underlying model for many events—that a critical threshold of warmth must be reached to trigger the event—however, is non-linear. We show that this mismatch between the statistical and biological models can produce the illusion of declining sensitivities with warming using current methods. We suggest simple alternative approaches that can better identify when and how warming will reshape biological processes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.01.12.426288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.01.12.426288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Authors: Janneke HilleRisLambers; Ailene K. Ettinger; Ailene K. Ettinger;doi: 10.1111/gcb.13649
pmid: 28161909
AbstractForecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population‐level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Authors: Janneke HilleRisLambers; Ailene K. Ettinger; Ailene K. Ettinger;doi: 10.1111/gcb.13649
pmid: 28161909
AbstractForecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population‐level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Janneke HilleRisLambers; Ailene K. Ettinger;doi: 10.3732/ajb.1200489
pmid: 23507736
• Premise of the study: The extent to which climate controls species’ range limits is a classic biological question that is particularly relevant given anthropogenic climate change. While climate is known to play a role in species distributions, biotic interactions such as competition also affect range limits. Furthermore, climatic and biotic controls of ranges may vary in strength across life stages, implying complex range shift dynamics with climate change.• Methods: We quantified climatic and competitive influences on growth of juvenile and adult trees of three conifer species on Mt. Rainier, Washington, United States. We collected annual growth data of these trees, which we compared to the competitive environment and annual climate (100 years of data) experienced by each individual.• Key results: We found that the relationships between growth and climate and between growth and competition differed by life stage and location. Growth was sensitive to heavy snowpack and cold temperatures at high elevation upper limits (treeline), but growth was poorly explained by climate in low elevation closed‐canopy forests. Competitive effects on growth were more important for saplings than adults, but did not become more important at either upper or lower range limits.• Conclusions: In all, our results suggest that range shifts under climate change will differ at leading vs. trailing edges. At treeline, warmer temperatures will lead to increased growth and likely to range expansion. However, climate change will have less dramatic effects in low elevation closed‐canopy forest communities, where growth is less strongly limited by climate, especially at young life stages.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Janneke HilleRisLambers; Ailene K. Ettinger;doi: 10.3732/ajb.1200489
pmid: 23507736
• Premise of the study: The extent to which climate controls species’ range limits is a classic biological question that is particularly relevant given anthropogenic climate change. While climate is known to play a role in species distributions, biotic interactions such as competition also affect range limits. Furthermore, climatic and biotic controls of ranges may vary in strength across life stages, implying complex range shift dynamics with climate change.• Methods: We quantified climatic and competitive influences on growth of juvenile and adult trees of three conifer species on Mt. Rainier, Washington, United States. We collected annual growth data of these trees, which we compared to the competitive environment and annual climate (100 years of data) experienced by each individual.• Key results: We found that the relationships between growth and climate and between growth and competition differed by life stage and location. Growth was sensitive to heavy snowpack and cold temperatures at high elevation upper limits (treeline), but growth was poorly explained by climate in low elevation closed‐canopy forests. Competitive effects on growth were more important for saplings than adults, but did not become more important at either upper or lower range limits.• Conclusions: In all, our results suggest that range shifts under climate change will differ at leading vs. trailing edges. At treeline, warmer temperatures will lead to increased growth and likely to range expansion. However, climate change will have less dramatic effects in low elevation closed‐canopy forest communities, where growth is less strongly limited by climate, especially at young life stages.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2014Publisher:PANGAEA Funded by:NSF | Dimensions of Biodiversit..., NSF | GRADUATE RESEARCH FELLOWS..., NSF | Graduate Research Fellows...NSF| Dimensions of Biodiversity Distributed Graduate Seminar ,NSF| GRADUATE RESEARCH FELLOWSHIP PROGRAM ,NSF| Graduate Research Fellowship Program (GRFP)Theobald, Elinore J; Ettinger, Ailene K; Burgess, Hillary K; DeBey, Lauren B; Schmidt, Natalie; Froehlich, Halley E; Wagner, Cherie; HilleRisLambers, Janneke; Tewksbury, Josh; Harsch, Melanie A; Parrish, Julia K;The collective impact of humans on biodiversity rivals mass extinction events defining Earth's history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n = 388), ~1.3 million volunteers participate, contributing up to US Dollar 2.5 billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity. Supplement to: Theobald, Elinore J; Ettinger, Ailene K; Burgess, Hillary K; DeBey, Lauren B; Schmidt, Natalie; Froehlich, Halley E; Wagner, Cherie; HilleRisLambers, Janneke; Tewksbury, Josh; Harsch, Melanie A; Parrish, Julia K (2015): Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation, 181, 236-244
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.840682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.840682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2014Publisher:PANGAEA Funded by:NSF | Dimensions of Biodiversit..., NSF | GRADUATE RESEARCH FELLOWS..., NSF | Graduate Research Fellows...NSF| Dimensions of Biodiversity Distributed Graduate Seminar ,NSF| GRADUATE RESEARCH FELLOWSHIP PROGRAM ,NSF| Graduate Research Fellowship Program (GRFP)Theobald, Elinore J; Ettinger, Ailene K; Burgess, Hillary K; DeBey, Lauren B; Schmidt, Natalie; Froehlich, Halley E; Wagner, Cherie; HilleRisLambers, Janneke; Tewksbury, Josh; Harsch, Melanie A; Parrish, Julia K;The collective impact of humans on biodiversity rivals mass extinction events defining Earth's history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n = 388), ~1.3 million volunteers participate, contributing up to US Dollar 2.5 billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity. Supplement to: Theobald, Elinore J; Ettinger, Ailene K; Burgess, Hillary K; DeBey, Lauren B; Schmidt, Natalie; Froehlich, Halley E; Wagner, Cherie; HilleRisLambers, Janneke; Tewksbury, Josh; Harsch, Melanie A; Parrish, Julia K (2015): Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation, 181, 236-244
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.840682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.840682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:NSF | Dimensions of Biodiversit..., NSF | Graduate Research Fellows..., NSF | GRADUATE RESEARCH FELLOWS...NSF| Dimensions of Biodiversity Distributed Graduate Seminar ,NSF| Graduate Research Fellowship Program (GRFP) ,NSF| GRADUATE RESEARCH FELLOWSHIP PROGRAMMelanie A. Harsch; Natalie Schmidt; Julia K. Parrish; Janneke HilleRisLambers; Joshua J. Tewksbury; Hillary K. Burgess; Cherie A. Wagner; Halley E. Froehlich; Ailene K. Ettinger; Lauren B DeBey; Elli J. Theobald;AbstractThe collective impact of humans on biodiversity rivals mass extinction events defining Earth’s history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n=388), ∼1.3million volunteers participate, contributing up to $2.5billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity.
Biological Conservat... arrow_drop_down Biological ConservationArticle . 2015License: CC BY NC SAData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 561 citations 561 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down Biological ConservationArticle . 2015License: CC BY NC SAData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:NSF | Dimensions of Biodiversit..., NSF | Graduate Research Fellows..., NSF | GRADUATE RESEARCH FELLOWS...NSF| Dimensions of Biodiversity Distributed Graduate Seminar ,NSF| Graduate Research Fellowship Program (GRFP) ,NSF| GRADUATE RESEARCH FELLOWSHIP PROGRAMMelanie A. Harsch; Natalie Schmidt; Julia K. Parrish; Janneke HilleRisLambers; Joshua J. Tewksbury; Hillary K. Burgess; Cherie A. Wagner; Halley E. Froehlich; Ailene K. Ettinger; Lauren B DeBey; Elli J. Theobald;AbstractThe collective impact of humans on biodiversity rivals mass extinction events defining Earth’s history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n=388), ∼1.3million volunteers participate, contributing up to $2.5billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity.
Biological Conservat... arrow_drop_down Biological ConservationArticle . 2015License: CC BY NC SAData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 561 citations 561 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down Biological ConservationArticle . 2015License: CC BY NC SAData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley S. Gee; Elizabeth M. Wolkovich; Elizabeth M. Wolkovich; Ailene K. Ettinger; Ailene K. Ettinger;doi: 10.1002/ajb2.1174
pmid: 30324664
Premise of the StudyPlant phenology is a critical trait, as the timings of phenophases such as budburst, leafout, flowering, and fruiting, are important to plant fitness. Despite much study about when individual phenophases occur and how they may shift with climate change, little is known about how multiple phenophases relate to one another across an entire growing season. We test the extent to which early phenological stages constrain later ones, throughout a growing season, across 25 angiosperm tree species.MethodsWe observed phenology (budburst, leafout, flowering, fruiting, and senescence) of 118 individual trees across 25 species, from April through December 2015.Key ResultsWe found that early phenological events weakly constrain most later events, with the strongest constraints seen between consecutive stages. In contrast, interphase duration was a much stronger predictor of phenology, especially for reproductive events, suggesting that the development time of flowers and fruits may constrain the phenology of these events.ConclusionsMuch of the variation in later phenological events can be explained by the timing of earlier events and by interphase durations. This highlights that a shift in one phenophase may often have cascading effects on later phases. Accurate forecasts of climate change impacts should therefore include multiple phenophases within and across years.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.1174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.1174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley S. Gee; Elizabeth M. Wolkovich; Elizabeth M. Wolkovich; Ailene K. Ettinger; Ailene K. Ettinger;doi: 10.1002/ajb2.1174
pmid: 30324664
Premise of the StudyPlant phenology is a critical trait, as the timings of phenophases such as budburst, leafout, flowering, and fruiting, are important to plant fitness. Despite much study about when individual phenophases occur and how they may shift with climate change, little is known about how multiple phenophases relate to one another across an entire growing season. We test the extent to which early phenological stages constrain later ones, throughout a growing season, across 25 angiosperm tree species.MethodsWe observed phenology (budburst, leafout, flowering, fruiting, and senescence) of 118 individual trees across 25 species, from April through December 2015.Key ResultsWe found that early phenological events weakly constrain most later events, with the strongest constraints seen between consecutive stages. In contrast, interphase duration was a much stronger predictor of phenology, especially for reproductive events, suggesting that the development time of flowers and fruits may constrain the phenology of these events.ConclusionsMuch of the variation in later phenological events can be explained by the timing of earlier events and by interphase durations. This highlights that a shift in one phenophase may often have cascading effects on later phases. Accurate forecasts of climate change impacts should therefore include multiple phenophases within and across years.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.1174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.1174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Kavya Pradhan; Ailene K. Ettinger; Michael J. Case; Janneke Hille Ris Lambers;doi: 10.1111/gcb.16714
pmid: 37029763
AbstractRecent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late‐successional forests have prompted efforts to restore old‐growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old‐growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old‐growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old‐growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Kavya Pradhan; Ailene K. Ettinger; Michael J. Case; Janneke Hille Ris Lambers;doi: 10.1111/gcb.16714
pmid: 37029763
AbstractRecent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late‐successional forests have prompted efforts to restore old‐growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old‐growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old‐growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old‐growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley E. M. Wolkovich; C. J. Chamberlain; D. M. Buonaiuto; A. K. Ettinger; I. Morales‐Castilla;doi: 10.1111/nph.18269
pmid: 35599356
SummaryClimate change has advanced plant phenology globally 4–6 d °C−1 on average. Such shifts are some of the most reported and predictable biological impacts of rising temperatures. Yet as climate change has marched on, phenological shifts have appeared muted over recent decades – failing to match simple predictions of an advancing spring with continued warming. The main hypothesis for these changing trends is that interactions between spring phenological cues – long‐documented in laboratory environments – are playing a greater role in natural environments due to climate change. Here, we argue that accurately linking shifts observed in long‐term data to underlying phenological cues is slowed by biases in observational studies and limited integration of insights from laboratory studies. We synthesize seven decades of laboratory experiments to quantify how phenological cue‐space has been studied and how treatments compare with shifts caused by climate change. Most studies focus on one cue, limiting our ability to make accurate predictions, but some well‐studied forest species offer opportunities to advance forecasting. We outline how greater integration of controlled‐environment studies with long‐term data could drive a new generation of laboratory experiments, built on physiological insights, that would transform our fundamental understanding of phenology and improve predictions.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley E. M. Wolkovich; C. J. Chamberlain; D. M. Buonaiuto; A. K. Ettinger; I. Morales‐Castilla;doi: 10.1111/nph.18269
pmid: 35599356
SummaryClimate change has advanced plant phenology globally 4–6 d °C−1 on average. Such shifts are some of the most reported and predictable biological impacts of rising temperatures. Yet as climate change has marched on, phenological shifts have appeared muted over recent decades – failing to match simple predictions of an advancing spring with continued warming. The main hypothesis for these changing trends is that interactions between spring phenological cues – long‐documented in laboratory environments – are playing a greater role in natural environments due to climate change. Here, we argue that accurately linking shifts observed in long‐term data to underlying phenological cues is slowed by biases in observational studies and limited integration of insights from laboratory studies. We synthesize seven decades of laboratory experiments to quantify how phenological cue‐space has been studied and how treatments compare with shifts caused by climate change. Most studies focus on one cue, limiting our ability to make accurate predictions, but some well‐studied forest species offer opportunities to advance forecasting. We outline how greater integration of controlled‐environment studies with long‐term data could drive a new generation of laboratory experiments, built on physiological insights, that would transform our fundamental understanding of phenology and improve predictions.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Wiley Jill E. Harvey; Stefan Klesse; Leander D. L. Anderegg; Leander D. L. Anderegg; Yueh-Hsin Lo; Christina M. Restaino; Jodi Axelson; Ann M. Lynch; Ann M. Lynch; Grant L. Harley; Lisa J. Wood; Bryan A. Black; Christopher H. Guiterman; Jose Villanueva-Díaz; John D. Shaw; Christopher D. O’Connor; Margaret E. K. Evans; R. J. DeRose; R. J. DeRose; Dan J. Smith; Dave Sauchyn; Ailene K. Ettinger; Flurin Babst; Flurin Babst; Hardy Griesbauer;doi: 10.1111/gcb.15170
pmid: 32433807
AbstractA central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree‐ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space‐for‐time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas‐fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed‐effects model to capture ring‐width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas‐fir's range; narrower rings and stronger climate sensitivity occurred across the semi‐arid interior. Ring‐width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas‐fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed‐effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree‐ring networks and results as a calibration target for next‐generation vegetation models.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Wiley Jill E. Harvey; Stefan Klesse; Leander D. L. Anderegg; Leander D. L. Anderegg; Yueh-Hsin Lo; Christina M. Restaino; Jodi Axelson; Ann M. Lynch; Ann M. Lynch; Grant L. Harley; Lisa J. Wood; Bryan A. Black; Christopher H. Guiterman; Jose Villanueva-Díaz; John D. Shaw; Christopher D. O’Connor; Margaret E. K. Evans; R. J. DeRose; R. J. DeRose; Dan J. Smith; Dave Sauchyn; Ailene K. Ettinger; Flurin Babst; Flurin Babst; Hardy Griesbauer;doi: 10.1111/gcb.15170
pmid: 32433807
AbstractA central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree‐ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space‐for‐time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas‐fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed‐effects model to capture ring‐width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas‐fir's range; narrower rings and stronger climate sensitivity occurred across the semi‐arid interior. Ring‐width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas‐fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed‐effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree‐ring networks and results as a calibration target for next‐generation vegetation models.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Elizabeth M. Wolkovich; Elizabeth M. Wolkovich; D. M. Buonaiuto; Ailene K. Ettinger; +3 AuthorsElizabeth M. Wolkovich; Elizabeth M. Wolkovich; D. M. Buonaiuto; Ailene K. Ettinger; Ailene K. Ettinger; Catherine J. Chamberlain; Ignacio Morales-Castilla;doi: 10.1111/nph.17172
pmid: 33421152
SummaryClimate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages (‘experienced photoperiod’). As photoperiod is a common trigger of seasonal biological responses – affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod – shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early‐season (‘spring’) events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio‐temporal shifts from climate change.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Elizabeth M. Wolkovich; Elizabeth M. Wolkovich; D. M. Buonaiuto; Ailene K. Ettinger; +3 AuthorsElizabeth M. Wolkovich; Elizabeth M. Wolkovich; D. M. Buonaiuto; Ailene K. Ettinger; Ailene K. Ettinger; Catherine J. Chamberlain; Ignacio Morales-Castilla;doi: 10.1111/nph.17172
pmid: 33421152
SummaryClimate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages (‘experienced photoperiod’). As photoperiod is a common trigger of seasonal biological responses – affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod – shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early‐season (‘spring’) events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio‐temporal shifts from climate change.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Cold Spring Harbor Laboratory Funded by:NSERCNSERCE. M. Wolkovich; J. Auerbach; C. J. Chamberlain; D. M. Buonaiuto; A. K. Ettinger; I. Morales‐Castilla; A. Gelman;pmid: 34355482
AbstractTemperature sensitivity—the magnitude of a biological response per °C—is a fundamental concept across scientific disciplines, especially biology, where temperature determines the rate of many plant, animal and ecosystem processes. Recently, a growing body of literature in global change biology has found temperature sensitivities decline as temperatures rise (Fuet al., 2015; Güsewell et al., 2017; Piao et al., 2017; Chen et al., 2019; Dai et al., 2019). Such observations have been used to suggest climate change is reshaping biological processes, with major implications for forecasts of future change. Here we present a simple alternative explanation for observed declining sensitivities: the use of linear models to estimate non-linear temperature responses. We show how linear estimates of sensitivities will appear to decline with warming for events that occur after a cumulative thermal threshold is met—a common model for many biological events. Corrections for the non-linearity of temperature response in simulated data and long-term phenological data from Europe remove the apparent decline. Our results show that rising temperatures combined with linear estimates based on calendar time produce observations of declining sensitivity—without any shift in the underlying biology. Current methods may thus undermine efforts to identify when and how warming will reshape biological processes.Significance statementRecently a growing body of literature has observed declining temperature sensitivities of plant leafout and other events with higher temperatures. Such results suggest that climate change is already reshaping fundamental biological processes. These temperature sensitivities are often estimated as the magnitude of a biological response per °C from linear regression. The underlying model for many events—that a critical threshold of warmth must be reached to trigger the event—however, is non-linear. We show that this mismatch between the statistical and biological models can produce the illusion of declining sensitivities with warming using current methods. We suggest simple alternative approaches that can better identify when and how warming will reshape biological processes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.01.12.426288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.01.12.426288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Cold Spring Harbor Laboratory Funded by:NSERCNSERCE. M. Wolkovich; J. Auerbach; C. J. Chamberlain; D. M. Buonaiuto; A. K. Ettinger; I. Morales‐Castilla; A. Gelman;pmid: 34355482
AbstractTemperature sensitivity—the magnitude of a biological response per °C—is a fundamental concept across scientific disciplines, especially biology, where temperature determines the rate of many plant, animal and ecosystem processes. Recently, a growing body of literature in global change biology has found temperature sensitivities decline as temperatures rise (Fuet al., 2015; Güsewell et al., 2017; Piao et al., 2017; Chen et al., 2019; Dai et al., 2019). Such observations have been used to suggest climate change is reshaping biological processes, with major implications for forecasts of future change. Here we present a simple alternative explanation for observed declining sensitivities: the use of linear models to estimate non-linear temperature responses. We show how linear estimates of sensitivities will appear to decline with warming for events that occur after a cumulative thermal threshold is met—a common model for many biological events. Corrections for the non-linearity of temperature response in simulated data and long-term phenological data from Europe remove the apparent decline. Our results show that rising temperatures combined with linear estimates based on calendar time produce observations of declining sensitivity—without any shift in the underlying biology. Current methods may thus undermine efforts to identify when and how warming will reshape biological processes.Significance statementRecently a growing body of literature has observed declining temperature sensitivities of plant leafout and other events with higher temperatures. Such results suggest that climate change is already reshaping fundamental biological processes. These temperature sensitivities are often estimated as the magnitude of a biological response per °C from linear regression. The underlying model for many events—that a critical threshold of warmth must be reached to trigger the event—however, is non-linear. We show that this mismatch between the statistical and biological models can produce the illusion of declining sensitivities with warming using current methods. We suggest simple alternative approaches that can better identify when and how warming will reshape biological processes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.01.12.426288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.01.12.426288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Authors: Janneke HilleRisLambers; Ailene K. Ettinger; Ailene K. Ettinger;doi: 10.1111/gcb.13649
pmid: 28161909
AbstractForecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population‐level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Authors: Janneke HilleRisLambers; Ailene K. Ettinger; Ailene K. Ettinger;doi: 10.1111/gcb.13649
pmid: 28161909
AbstractForecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population‐level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Janneke HilleRisLambers; Ailene K. Ettinger;doi: 10.3732/ajb.1200489
pmid: 23507736
• Premise of the study: The extent to which climate controls species’ range limits is a classic biological question that is particularly relevant given anthropogenic climate change. While climate is known to play a role in species distributions, biotic interactions such as competition also affect range limits. Furthermore, climatic and biotic controls of ranges may vary in strength across life stages, implying complex range shift dynamics with climate change.• Methods: We quantified climatic and competitive influences on growth of juvenile and adult trees of three conifer species on Mt. Rainier, Washington, United States. We collected annual growth data of these trees, which we compared to the competitive environment and annual climate (100 years of data) experienced by each individual.• Key results: We found that the relationships between growth and climate and between growth and competition differed by life stage and location. Growth was sensitive to heavy snowpack and cold temperatures at high elevation upper limits (treeline), but growth was poorly explained by climate in low elevation closed‐canopy forests. Competitive effects on growth were more important for saplings than adults, but did not become more important at either upper or lower range limits.• Conclusions: In all, our results suggest that range shifts under climate change will differ at leading vs. trailing edges. At treeline, warmer temperatures will lead to increased growth and likely to range expansion. However, climate change will have less dramatic effects in low elevation closed‐canopy forest communities, where growth is less strongly limited by climate, especially at young life stages.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Janneke HilleRisLambers; Ailene K. Ettinger;doi: 10.3732/ajb.1200489
pmid: 23507736
• Premise of the study: The extent to which climate controls species’ range limits is a classic biological question that is particularly relevant given anthropogenic climate change. While climate is known to play a role in species distributions, biotic interactions such as competition also affect range limits. Furthermore, climatic and biotic controls of ranges may vary in strength across life stages, implying complex range shift dynamics with climate change.• Methods: We quantified climatic and competitive influences on growth of juvenile and adult trees of three conifer species on Mt. Rainier, Washington, United States. We collected annual growth data of these trees, which we compared to the competitive environment and annual climate (100 years of data) experienced by each individual.• Key results: We found that the relationships between growth and climate and between growth and competition differed by life stage and location. Growth was sensitive to heavy snowpack and cold temperatures at high elevation upper limits (treeline), but growth was poorly explained by climate in low elevation closed‐canopy forests. Competitive effects on growth were more important for saplings than adults, but did not become more important at either upper or lower range limits.• Conclusions: In all, our results suggest that range shifts under climate change will differ at leading vs. trailing edges. At treeline, warmer temperatures will lead to increased growth and likely to range expansion. However, climate change will have less dramatic effects in low elevation closed‐canopy forest communities, where growth is less strongly limited by climate, especially at young life stages.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1200489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2014Publisher:PANGAEA Funded by:NSF | Dimensions of Biodiversit..., NSF | GRADUATE RESEARCH FELLOWS..., NSF | Graduate Research Fellows...NSF| Dimensions of Biodiversity Distributed Graduate Seminar ,NSF| GRADUATE RESEARCH FELLOWSHIP PROGRAM ,NSF| Graduate Research Fellowship Program (GRFP)Theobald, Elinore J; Ettinger, Ailene K; Burgess, Hillary K; DeBey, Lauren B; Schmidt, Natalie; Froehlich, Halley E; Wagner, Cherie; HilleRisLambers, Janneke; Tewksbury, Josh; Harsch, Melanie A; Parrish, Julia K;The collective impact of humans on biodiversity rivals mass extinction events defining Earth's history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n = 388), ~1.3 million volunteers participate, contributing up to US Dollar 2.5 billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity. Supplement to: Theobald, Elinore J; Ettinger, Ailene K; Burgess, Hillary K; DeBey, Lauren B; Schmidt, Natalie; Froehlich, Halley E; Wagner, Cherie; HilleRisLambers, Janneke; Tewksbury, Josh; Harsch, Melanie A; Parrish, Julia K (2015): Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation, 181, 236-244
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.840682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.840682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2014Publisher:PANGAEA Funded by:NSF | Dimensions of Biodiversit..., NSF | GRADUATE RESEARCH FELLOWS..., NSF | Graduate Research Fellows...NSF| Dimensions of Biodiversity Distributed Graduate Seminar ,NSF| GRADUATE RESEARCH FELLOWSHIP PROGRAM ,NSF| Graduate Research Fellowship Program (GRFP)Theobald, Elinore J; Ettinger, Ailene K; Burgess, Hillary K; DeBey, Lauren B; Schmidt, Natalie; Froehlich, Halley E; Wagner, Cherie; HilleRisLambers, Janneke; Tewksbury, Josh; Harsch, Melanie A; Parrish, Julia K;The collective impact of humans on biodiversity rivals mass extinction events defining Earth's history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n = 388), ~1.3 million volunteers participate, contributing up to US Dollar 2.5 billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity. Supplement to: Theobald, Elinore J; Ettinger, Ailene K; Burgess, Hillary K; DeBey, Lauren B; Schmidt, Natalie; Froehlich, Halley E; Wagner, Cherie; HilleRisLambers, Janneke; Tewksbury, Josh; Harsch, Melanie A; Parrish, Julia K (2015): Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation, 181, 236-244
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.840682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.840682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:NSF | Dimensions of Biodiversit..., NSF | Graduate Research Fellows..., NSF | GRADUATE RESEARCH FELLOWS...NSF| Dimensions of Biodiversity Distributed Graduate Seminar ,NSF| Graduate Research Fellowship Program (GRFP) ,NSF| GRADUATE RESEARCH FELLOWSHIP PROGRAMMelanie A. Harsch; Natalie Schmidt; Julia K. Parrish; Janneke HilleRisLambers; Joshua J. Tewksbury; Hillary K. Burgess; Cherie A. Wagner; Halley E. Froehlich; Ailene K. Ettinger; Lauren B DeBey; Elli J. Theobald;AbstractThe collective impact of humans on biodiversity rivals mass extinction events defining Earth’s history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n=388), ∼1.3million volunteers participate, contributing up to $2.5billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity.
Biological Conservat... arrow_drop_down Biological ConservationArticle . 2015License: CC BY NC SAData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 561 citations 561 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down Biological ConservationArticle . 2015License: CC BY NC SAData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:NSF | Dimensions of Biodiversit..., NSF | Graduate Research Fellows..., NSF | GRADUATE RESEARCH FELLOWS...NSF| Dimensions of Biodiversity Distributed Graduate Seminar ,NSF| Graduate Research Fellowship Program (GRFP) ,NSF| GRADUATE RESEARCH FELLOWSHIP PROGRAMMelanie A. Harsch; Natalie Schmidt; Julia K. Parrish; Janneke HilleRisLambers; Joshua J. Tewksbury; Hillary K. Burgess; Cherie A. Wagner; Halley E. Froehlich; Ailene K. Ettinger; Lauren B DeBey; Elli J. Theobald;AbstractThe collective impact of humans on biodiversity rivals mass extinction events defining Earth’s history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n=388), ∼1.3million volunteers participate, contributing up to $2.5billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity.
Biological Conservat... arrow_drop_down Biological ConservationArticle . 2015License: CC BY NC SAData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 561 citations 561 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down Biological ConservationArticle . 2015License: CC BY NC SAData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley S. Gee; Elizabeth M. Wolkovich; Elizabeth M. Wolkovich; Ailene K. Ettinger; Ailene K. Ettinger;doi: 10.1002/ajb2.1174
pmid: 30324664
Premise of the StudyPlant phenology is a critical trait, as the timings of phenophases such as budburst, leafout, flowering, and fruiting, are important to plant fitness. Despite much study about when individual phenophases occur and how they may shift with climate change, little is known about how multiple phenophases relate to one another across an entire growing season. We test the extent to which early phenological stages constrain later ones, throughout a growing season, across 25 angiosperm tree species.MethodsWe observed phenology (budburst, leafout, flowering, fruiting, and senescence) of 118 individual trees across 25 species, from April through December 2015.Key ResultsWe found that early phenological events weakly constrain most later events, with the strongest constraints seen between consecutive stages. In contrast, interphase duration was a much stronger predictor of phenology, especially for reproductive events, suggesting that the development time of flowers and fruits may constrain the phenology of these events.ConclusionsMuch of the variation in later phenological events can be explained by the timing of earlier events and by interphase durations. This highlights that a shift in one phenophase may often have cascading effects on later phases. Accurate forecasts of climate change impacts should therefore include multiple phenophases within and across years.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.1174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.1174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley S. Gee; Elizabeth M. Wolkovich; Elizabeth M. Wolkovich; Ailene K. Ettinger; Ailene K. Ettinger;doi: 10.1002/ajb2.1174
pmid: 30324664
Premise of the StudyPlant phenology is a critical trait, as the timings of phenophases such as budburst, leafout, flowering, and fruiting, are important to plant fitness. Despite much study about when individual phenophases occur and how they may shift with climate change, little is known about how multiple phenophases relate to one another across an entire growing season. We test the extent to which early phenological stages constrain later ones, throughout a growing season, across 25 angiosperm tree species.MethodsWe observed phenology (budburst, leafout, flowering, fruiting, and senescence) of 118 individual trees across 25 species, from April through December 2015.Key ResultsWe found that early phenological events weakly constrain most later events, with the strongest constraints seen between consecutive stages. In contrast, interphase duration was a much stronger predictor of phenology, especially for reproductive events, suggesting that the development time of flowers and fruits may constrain the phenology of these events.ConclusionsMuch of the variation in later phenological events can be explained by the timing of earlier events and by interphase durations. This highlights that a shift in one phenophase may often have cascading effects on later phases. Accurate forecasts of climate change impacts should therefore include multiple phenophases within and across years.
American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.1174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down American Journal of BotanyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ajb2.1174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Kavya Pradhan; Ailene K. Ettinger; Michael J. Case; Janneke Hille Ris Lambers;doi: 10.1111/gcb.16714
pmid: 37029763
AbstractRecent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late‐successional forests have prompted efforts to restore old‐growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old‐growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old‐growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old‐growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Kavya Pradhan; Ailene K. Ettinger; Michael J. Case; Janneke Hille Ris Lambers;doi: 10.1111/gcb.16714
pmid: 37029763
AbstractRecent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late‐successional forests have prompted efforts to restore old‐growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old‐growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old‐growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old‐growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley E. M. Wolkovich; C. J. Chamberlain; D. M. Buonaiuto; A. K. Ettinger; I. Morales‐Castilla;doi: 10.1111/nph.18269
pmid: 35599356
SummaryClimate change has advanced plant phenology globally 4–6 d °C−1 on average. Such shifts are some of the most reported and predictable biological impacts of rising temperatures. Yet as climate change has marched on, phenological shifts have appeared muted over recent decades – failing to match simple predictions of an advancing spring with continued warming. The main hypothesis for these changing trends is that interactions between spring phenological cues – long‐documented in laboratory environments – are playing a greater role in natural environments due to climate change. Here, we argue that accurately linking shifts observed in long‐term data to underlying phenological cues is slowed by biases in observational studies and limited integration of insights from laboratory studies. We synthesize seven decades of laboratory experiments to quantify how phenological cue‐space has been studied and how treatments compare with shifts caused by climate change. Most studies focus on one cue, limiting our ability to make accurate predictions, but some well‐studied forest species offer opportunities to advance forecasting. We outline how greater integration of controlled‐environment studies with long‐term data could drive a new generation of laboratory experiments, built on physiological insights, that would transform our fundamental understanding of phenology and improve predictions.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley E. M. Wolkovich; C. J. Chamberlain; D. M. Buonaiuto; A. K. Ettinger; I. Morales‐Castilla;doi: 10.1111/nph.18269
pmid: 35599356
SummaryClimate change has advanced plant phenology globally 4–6 d °C−1 on average. Such shifts are some of the most reported and predictable biological impacts of rising temperatures. Yet as climate change has marched on, phenological shifts have appeared muted over recent decades – failing to match simple predictions of an advancing spring with continued warming. The main hypothesis for these changing trends is that interactions between spring phenological cues – long‐documented in laboratory environments – are playing a greater role in natural environments due to climate change. Here, we argue that accurately linking shifts observed in long‐term data to underlying phenological cues is slowed by biases in observational studies and limited integration of insights from laboratory studies. We synthesize seven decades of laboratory experiments to quantify how phenological cue‐space has been studied and how treatments compare with shifts caused by climate change. Most studies focus on one cue, limiting our ability to make accurate predictions, but some well‐studied forest species offer opportunities to advance forecasting. We outline how greater integration of controlled‐environment studies with long‐term data could drive a new generation of laboratory experiments, built on physiological insights, that would transform our fundamental understanding of phenology and improve predictions.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Wiley Jill E. Harvey; Stefan Klesse; Leander D. L. Anderegg; Leander D. L. Anderegg; Yueh-Hsin Lo; Christina M. Restaino; Jodi Axelson; Ann M. Lynch; Ann M. Lynch; Grant L. Harley; Lisa J. Wood; Bryan A. Black; Christopher H. Guiterman; Jose Villanueva-Díaz; John D. Shaw; Christopher D. O’Connor; Margaret E. K. Evans; R. J. DeRose; R. J. DeRose; Dan J. Smith; Dave Sauchyn; Ailene K. Ettinger; Flurin Babst; Flurin Babst; Hardy Griesbauer;doi: 10.1111/gcb.15170
pmid: 32433807
AbstractA central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree‐ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space‐for‐time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas‐fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed‐effects model to capture ring‐width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas‐fir's range; narrower rings and stronger climate sensitivity occurred across the semi‐arid interior. Ring‐width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas‐fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed‐effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree‐ring networks and results as a calibration target for next‐generation vegetation models.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Wiley Jill E. Harvey; Stefan Klesse; Leander D. L. Anderegg; Leander D. L. Anderegg; Yueh-Hsin Lo; Christina M. Restaino; Jodi Axelson; Ann M. Lynch; Ann M. Lynch; Grant L. Harley; Lisa J. Wood; Bryan A. Black; Christopher H. Guiterman; Jose Villanueva-Díaz; John D. Shaw; Christopher D. O’Connor; Margaret E. K. Evans; R. J. DeRose; R. J. DeRose; Dan J. Smith; Dave Sauchyn; Ailene K. Ettinger; Flurin Babst; Flurin Babst; Hardy Griesbauer;doi: 10.1111/gcb.15170
pmid: 32433807
AbstractA central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree‐ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space‐for‐time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas‐fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed‐effects model to capture ring‐width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas‐fir's range; narrower rings and stronger climate sensitivity occurred across the semi‐arid interior. Ring‐width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas‐fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed‐effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree‐ring networks and results as a calibration target for next‐generation vegetation models.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu